Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell Proteomics ; 15(9): 2987-3002, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435585

RESUMO

Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity.


Assuntos
Fezes/química , Glicosídeo Hidrolases/metabolismo , Leite Humano/química , Oligossacarídeos/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Cromatografia Líquida , Fezes/microbiologia , Microbioma Gastrointestinal , Humanos , Lactente , Espectrometria de Massas
2.
Pediatr Res ; 79(3): 445-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26571226

RESUMO

BACKGROUND: The ingestion of probiotics to attempt to improve health is increasingly common; however, quality control of some commercial products can be limited. Clinical practice is shifting toward the routine use of probiotics to aid in prevention of necrotizing enterocolitis in premature infants, and probiotic administration to term infants is increasingly common to treat colic and/or prevent atopic disease. Since bifidobacteria dominate the feces of healthy breast-fed infants, they are often included in infant-targeted probiotics. METHODS: We evaluated 16 probiotic products to determine how well their label claims describe the species of detectable bifidobacteria in the product. Recently developed DNA-based methods were used as a primary means of identification, and were confirmed using culture-based techniques. RESULTS: We found that the contents of many bifidobacterial probiotic products differ from the ingredient list, sometimes at a subspecies level. Only 1 of the 16 probiotics perfectly matched its bifidobacterial label claims in all samples tested, and both pill-to-pill and lot-to-lot variation were observed. CONCLUSION: Given the known differences between various bifidobacterial species and subspecies in metabolic capacity and colonization abilities, the prevalence of misidentified bifidobacteria in these products is cause for concern for those involved in clinical trials and consumers of probiotic products.


Assuntos
Técnicas de Tipagem Bacteriana , Bifidobacterium/genética , Enterocolite Necrosante/prevenção & controle , Probióticos/uso terapêutico , Bifidobacterium/classificação , DNA Bacteriano/análise , Fezes/microbiologia , Genoma Bacteriano , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Pediatr ; 163(6): 1585-1591.e9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23993139

RESUMO

OBJECTIVE: To determine the impact of 2 probiotic bifidobacteria on the fecal microbiota of premature infants fed either human milk or formula. STUDY DESIGN: In the first of two phase 1 clinical trials, 12 premature infants receiving formula feedings were assigned randomly to receive either Bifidobacterium longum ssp infantis or Bifidobacterium animalis ssp lactis in increasing doses during a 5-week period. In the second, 9 premature infants receiving their mother's milk received each of the two bifidobacteria for 2 weeks separated by a 1-week washout period. Serial stool specimens from each infant were analyzed by terminal restriction fragment-length polymorphism and quantitative polymerase chain reaction for bacterial composition. RESULTS: Among the formula-fed infants, there was a greater increase in fecal bifidobacteria among infants receiving B infantis (Binf) than those receiving B lactis (Blac). This difference was most marked at a dose of 1.4 × 10(9) colony-forming units twice daily (P < .05). Bacterial diversity improved over dose/time in those infants receiving Binf. Among the human milk-fed infants, greater increases in fecal bifidobacteria and decreases in γ-Proteobacteria followed the administration of Binf than Blac. The B longum group (which includes Binf but not Blac) was the dominant bifidobacteria among the human milk-fed infants, regardless of the probiotic administered. CONCLUSIONS: Binf was more effective at colonizing the fecal microbiota than Blac in both formula-fed and human milk-fed premature infants. The combination of human milk plus Binf resulted in the greatest fecal levels of bifidobacteria.


Assuntos
Bifidobacterium , Aleitamento Materno , Fezes/microbiologia , Fórmulas Infantis , Probióticos , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
4.
Anaerobe ; 19: 62-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23261904

RESUMO

Bifidobacteria are intestinal anaerobes often associated with gut health. Specific bifidobacterial species are particularly common in the gastrointestinal tract of breast-fed infants. Current short read next-generation sequencing approaches to profile fecal microbial ecologies do not discriminate bifidobacteria to the species level. Here we describe a low-cost terminal restriction fragment length polymorphism (TRFLP) procedure to distinguish between the common infant-associated bifidobacterial species. An empirical database of TRF sizes was created from both common reference strains and well-identified isolates from infant feces. Species-specific quantitative PCR validated bifidobacterial-specific TRFLP profiles from infant feces. These results indicate that bifidobacterial-specific TRFLP is a useful method to monitor intestinal bifidobacterial populations from infant fecal samples. When used alongside next generation sequencing methods that detect broader population levels at lower resolution, this high-throughput, low-cost tool can help clarify the role of bifidobacteria in health and disease.


Assuntos
Bifidobacterium/classificação , Biota , Trato Gastrointestinal/microbiologia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Bifidobacterium/genética , Humanos , Lactente
5.
Microbiol Resour Announc ; 12(12): e0054123, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37943044

RESUMO

Bifidobacterium adolescentis iVS-1 is a human-isolated strain known to possess several probiotic properties. Here, its genome was completely sequenced to examine genes associated with lactose metabolism and other potentially beneficial traits, such as the production of folate and gamma-aminobutyric acid (GABA).

6.
Gut Microbes ; 15(1): 2185034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919522

RESUMO

Probiotics are used for both generally healthy consumers and in clinical settings. However, theoretical and proven adverse events from probiotic consumption exist. New probiotic strains and products, as well as expanding use of probiotics into vulnerable populations, warrants concise, and actionable recommendations on how to work toward their safe and effective use. The International Scientific Association for Probiotics and Prebiotics convened a meeting to discuss and produce evidence-based recommendations on potential acute and long-term risks, risks to vulnerable populations, the importance for probiotic product quality to match the needs of vulnerable populations, and the need for adverse event reporting related to probiotic use. The importance of whole genome sequencing, which enables determination of virulence, toxin, and antibiotic resistance genes, as well as clear assignment of species and strain identity, is emphasized. We present recommendations to guide the scientific and medical community on judging probiotic safety.


What is the context? Probiotics, available to healthy consumers as both dietary supplements and foods, are also used by some patient populations. The goal of this paper is to determine if any new factors have emerged that would impact current views about probiotic safety for both these populations.What is new? The authors conclude that established practices are sensibly addressing factors important to the safety of traditional probiotics used by the general population. They also make recommendations regarding emerging safety considerations. Probiotics targeted for patient populations should undergo stringent testing to meet quality standards appropriate for that population, preferably verified by an independent third party. The safety of probiotics derived from species without a history of safe use must be considered on a case-by-case basis. Research is needed to address some gaps, for example which best animal models to use for safety assessment of live microbes, the possibility of antibiotic resistance gene transfer via transformation, and potential impact of probiotic-induced changes in microbiomes, interactions with drugs, and probiotic colonization.What is the impact? Probiotics of sufficient quality for patient populations are being developed and should be used accordingly. Long-term safety assessments for probiotics should be consistent with, and not more stringent than, current regulatory requirements for biologic drugs, including fecal microbial transplants. Rigor in collecting and reporting data on adverse events is needed. The authors confirm the need for understanding the entire genetic makeup of a probiotic as a cornerstone for assessing its safety.


Assuntos
Microbioma Gastrointestinal , Probióticos , Antibacterianos/efeitos adversos , Prebióticos , Probióticos/efeitos adversos
7.
Nutrients ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406036

RESUMO

Bifidobacterium species are beneficial and dominant members of the breastfed infant gut microbiome; however, their health benefits are partially species-dependent. Here, we characterize the species and subspecies of Bifidobacterium in breastfed infants around the world to consider the potential impact of a historic dietary shift on the disappearance of B. longum subsp. infantis in some populations. Across populations, three distinct patterns of Bifidobacterium colonization emerged: (1) The dominance of Bifidobacterium longum subspecies infantis, (2) prevalent Bifidobacterium of multiple species, and (3) the frequent absence of any Bifidobacterium. These patterns appear related to a country's history of breastfeeding, with infants in countries with historically high rates of long-duration breastfeeding more likely to be colonized by B. longum subspecies infantis compared with infants in countries with histories of shorter-duration breastfeeding. In addition, the timing of infant colonization with B. longum subsp. infantis is consistent with horizontal transmission of this subspecies, rather than the vertical transmission previously reported for other Bifidobacterium species. These findings highlight the need to consider historical and cultural influences on the prevalence of gut commensals and the need to understand epidemiological transmission patterns of Bifidobacterium and other major commensals.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Bifidobacterium , Aleitamento Materno , Estudos Transversais , Feminino , Humanos , Lactente
8.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959944

RESUMO

Streptococcus salivarius (S. salivarius) K12 supplementation has been found to reduce the risk of recurrent upper respiratory tract infections. Yet, studies have not reported the effect of supplementation on oral S. salivarius K12 levels or the salivary microbiome. This clinical trial was designed to determine how supplementation with S. salivarius K12 influences the oral microbiome. In a randomized, double-blind, placebo-controlled trial, 13 healthy adults received a probiotic powder (PRO) containing Lactobacillus acidophilus, Bifidobacterium lactis, and S. salivarius K12 and 12 healthy adults received a placebo-control powder (CON) (n = 12) for 14 consecutive days. Oral S. salivarius K12 and total bacteria were quantified by qPCR and the overall oral microbiome was measured using 16S rRNA amplicon sequencing. Supplementation significantly increased mean salivary S. salivarius K12 levels by 5 logs compared to baseline for the PRO group (p < 0.0005), which returned to baseline 2 weeks post-supplementation. Compared with the CON group, salivary S. salivarius K12 was 5 logs higher in the PRO group at the end of the supplementation period (p < 0.001). Neither time nor supplementation influenced the overall oral microbiome. Supplementation with a probiotic cocktail containing S. salivarius K12 for two weeks significantly increased levels of salivary S. salivarius K12.


Assuntos
Suplementos Nutricionais , Voluntários Saudáveis , Probióticos/administração & dosagem , Probióticos/farmacologia , Saliva/microbiologia , Streptococcus salivarius , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Recidiva , Infecções Respiratórias/prevenção & controle
9.
mSphere ; 6(4): e0008421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232082

RESUMO

Probiotics are consumed in fermented dairy products or as capsules for their putative health benefits. However, little research has been done to evaluate the effects of the delivery matrix on the health benefits of probiotics in humans. To examine the effects of delivering Bifidobacterium animalis subsp. lactis BB-12 (BB-12) (log10 10 ± 0.5 CFU/day) via a yogurt smoothie versus a capsule, we monitored the fecal microbiota, gut transit times (GTTs), and fecal excretion of short-chain fatty acids (SCFAs) in healthy adults. In a randomized, four-period, crossover study performed in a partially blind manner, 36 adults were recruited and randomly assigned to four treatments: control yogurt smoothie (YS), yogurt smoothie with BB-12 added prefermentation (PRE), yogurt smoothie with BB-12 added postfermentation (POST), and capsule containing BB-12 (CAP). Participants' fecal microbiota was assessed using 16S rRNA sequencing, GTTs via SmartPill, and fecal SCFAs by gas chromatography (GC) before (baseline) and after each intervention. Participants had significantly higher percentage of Streptococcus after consuming YS versus CAP (P = 0.01). Bifidobacterium-specific terminal restriction fragment length polymorphism analysis revealed a significantly higher percentage of B. animalis after consuming PRE and POST compared to baseline, YS, CAP, and final washout (P < 0.0001). The predominant SCFAs were negatively correlated with GTTs. Consumption of BB-12 delivered in a yogurt smoothie or capsule did not significantly alter the composition of the gut microbiota, GTTs, or fecal SCFA concentration of the study cohort. However, daily consumption of BB-12 in yogurt smoothie may result in higher relative abundance of B. animalis in healthy adults. (This trial has been registered at ClinicalTrials.gov under identifier NCT01399996.) IMPORTANCE Bifidobacterium animalis subsp. lactis BB-12 is a probiotic strain that has been used worldwide since 1985. It has commonly been delivered in fermented dairy products for perceived benefits associated with gut health and enhanced immune function. In addition to fermented dairy products, many new probiotic-containing alternatives such as probiotic-containing juice, probiotic-containing chocolate, and capsules have been developed. While these products provide more options for people to access probiotics, little research has been done on the effect of delivery matrix (dairy versus nondairy) on their efficacy in humans. In addition, it was unclear how yogurt fermentation may influence the survival of BB-12 in the product or on its performance in vivo. The significance of our study is in simultaneously assessing the effect of BB-12, alone and in different delivery vehicles, on the gut transit time, fecal short-chain fatty acids, and the composition of the gut microbiota of the study cohort.


Assuntos
Bifidobacterium animalis/fisiologia , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Bifidobacterium animalis/genética , Cápsulas/administração & dosagem , Estudos Cross-Over , Fezes/química , Fermentação , Voluntários Saudáveis , Humanos , Probióticos/administração & dosagem , RNA Ribossômico 16S/genética , Iogurte/microbiologia
10.
Appl Environ Microbiol ; 75(3): 573-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19047379

RESUMO

Expression of the Pho regulon in Escherichia coli is induced in response to low levels of environmental phosphate (P(i)). Under these conditions, the high-affinity PstSCAB(2) protein (i.e., with two PstB proteins) is the primary P(i) transporter. Expression from the pstSCAB-phoU operon is regulated by the PhoB/PhoR two-component regulatory system. PhoU is a negative regulator of the Pho regulon; however, the mechanism by which PhoU accomplishes this is currently unknown. Genetic studies of phoU have proven to be difficult because deletion of the phoU gene leads to a severe growth defect and creates strong selection for compensatory mutations resulting in confounding data. To overcome the instability of phoU deletions, we employed a promoter-swapping technique that places expression of the phoBR two-component system under control of the P(tac) promoter and the lacO(ID) regulatory module. This technique may be generally applicable for controlling expression of other chromosomal genes in E. coli. Here we utilized P(phoB)::P(tac) and P(pstS)::P(tac) strains to characterize phenotypes resulting from various DeltaphoU mutations. Our results indicate that PhoU controls the activity of the PstSCAB(2) transporter, as well as its abundance within the cell. In addition, we used the P(phoB)::P(tac) DeltaphoU strain as a platform to begin characterizing new phoU mutations in plasmids.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Genes Essenciais , Proteínas de Membrana Transportadoras/genética , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Recombinação Genética , Supressão Genética , Fatores de Transcrição/genética
11.
PeerJ ; 7: e8168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31844574

RESUMO

Dedicated lactation rooms are a modern development as mothers return to work while still providing breastmilk to their absent infants. This study describes the built environment microbiome of lactation rooms and daycares, and explores the influence of temperature and humidity on the microbiome of lactation rooms. Sterile swabs were used to collect samples from five different sites in lactation rooms at University of California, Davis and from five different sites in daycares located in Davis, California. DNA from the swabs was extracted and the V4 region of the 16S rRNA gene was sequenced using Illumina MiSeq. Temperature and relative humidity data were collected on a subset of the lactation rooms. Sampled lactation rooms could be either dedicated lactation rooms or could also serve other functions (e.g., combined lactation room and restroom lounge). The majority of sequence reads were identified as belonging to family Moraxellaceae, with 73% of all reads included in analysis identified as an unknown species of Acinetobacter. Alpha diversity was analyzed using the Shannon index, while beta diversity was analyzed using unweighted and weighted UniFrac distance. The Jaccard distance was used to measure amount of change at sampling locations between time points for analysis of the impact of temperature and humidity on the microbiome. There were significant differences in the beta diversity of the microbiome of lactation rooms by room type. There were also significant differences in the beta diversity of the microbiome by sample collection location. There were no significant differences in either alpha or beta diversity associated with room temperature or humidity. Additional studies are needed to understand if the differences in lactation room type may result in differences in the breastmilk microbiome of milk collected in those rooms, and to what extent any such differences may influence the infant microbiome.

12.
Nestle Nutr Inst Workshop Ser ; 88: 149-159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346936

RESUMO

The composition of an infant's gut microbiome can impact their immediate and long-term health. Bifdobacteria play a major role in structuring the gut microbiome of breastfed infants due to their ability to consume oligosaccharides found in human milk. However, recent studies have revealed that bifidobacteria are often absent in the gut microbiome of breastfed infants in some locations. This lack of colonization may be due either to differences in the environmental conditions in the gastrointestinal tract of uncolonized infants which prohibit the growth of bifidobacteria or a dearth of sources from which infants may acquire these specialized bacterial species. Potential mechanisms by which these broad factors may lead to lower colonization of infants by bifidobacteria are discussed herein. Environmental conditions which may select against bifidobacteria include low rates/duration of breastfeeding, milk glycan composition, and antimicrobial use. Routes of colonization by bifidobacteria which may be disrupted include maternal transfer via vaginal birth, fecal-oral routes, or via breast milk itself. A careful contemplation of the conditions experienced by bifidobacteria over human evolutionary history may lead to further hypotheses as to the causative factors of the differential colonization by this foundation genus in some contemporary locations.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Aleitamento Materno , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano/química , Leite Humano/microbiologia , Polissacarídeos/análise
13.
Sci Rep ; 7: 40466, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079170

RESUMO

Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother's HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3'-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota.


Assuntos
Desenvolvimento Infantil/fisiologia , Microbioma Gastrointestinal , Leite Humano/química , Mães , Oligossacarídeos/análise , Gâmbia , Humanos , Lactente , Complexo Antígeno L1 Leucocitário/metabolismo , Modelos Lineares , Morbidade , Período Pós-Parto/fisiologia , Estações do Ano , Fatores de Tempo
14.
Sci Rep ; 7: 40932, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150690

RESUMO

Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant's gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother's secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.


Assuntos
Aleitamento Materno , Fezes/microbiologia , Microbioma Gastrointestinal , Armênia , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Feminino , República da Geórgia , Humanos , Lactente , Recém-Nascido , Masculino , RNA Ribossômico 16S/genética
15.
Curr Opin Biotechnol ; 37: 182-189, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773388

RESUMO

High-throughput, 'next-generation' sequencing tools offer many exciting new possibilities for food research. From investigating microbial dynamics within food fermentations to the ecosystem of the food-processing built environment, amplicon sequencing, metagenomics, and transcriptomics present novel applications for exploring microbial communities in, on, and around our foods. This review discusses the many uses of these tools for food-related and food facility-related research and highlights where they may yield nuanced insight into the microbial world of food production systems.


Assuntos
Alimentos , Animais , Ecossistema , Manipulação de Alimentos , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica
16.
PeerJ ; 4: e1612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819854

RESUMO

Infant fecal samples are commonly studied to investigate the impacts of breastfeeding on the development of the microbiota and subsequent health effects. Comparisons of infants living in different geographic regions and environmental contexts are needed to aid our understanding of evolutionarily-selected milk adaptations. However, the preservation of fecal samples from individuals in remote locales until they can be processed can be a challenge. Freeze-drying (lyophilization) offers a cost-effective way to preserve some biological samples for transport and analysis at a later date. Currently, it is unknown what, if any, biases are introduced into various analyses by the freeze-drying process. Here, we investigated how freeze-drying affected analysis of two relevant and intertwined aspects of infant fecal samples, marker gene amplicon sequencing of the bacterial community and the fecal oligosaccharide profile (undigested human milk oligosaccharides). No differences were discovered between the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene sequencing data showed an increase in proportional representation of Bacteriodes and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-drying. This sample treatment bias may possibly be related to the cell morphology of these different taxa (Gram status). However, these effects did not overwhelm the natural variation among individuals, as the community data still strongly grouped by subject and not by freeze-drying status. We also found that compensating for sample concentration during freeze-drying, while not necessary, was also not detrimental. Freeze-drying may therefore be an acceptable method of sample preservation and mass reduction for some studies of microbial ecology and milk glycan analysis.

17.
Microbiome ; 3: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922665

RESUMO

BACKGROUND: Individuals with inactive alleles of the fucosyltransferase 2 gene (FUT2; termed the 'secretor' gene) are common in many populations. Some members of the genus Bifidobacterium, common infant gut commensals, are known to consume 2'-fucosylated glycans found in the breast milk of secretor mothers. We investigated the effects of maternal secretor status on the developing infant microbiota with a special emphasis on bifidobacterial species abundance. RESULTS: On average, bifidobacteria were established earlier and more often in infants fed by secretor mothers than in infants fed by non-secretor mothers. In secretor-fed infants, the relative abundance of the Bifidobacterium longum group was most strongly correlated with high percentages of the order Bifidobacteriales. Conversely, in non-secretor-fed infants, Bifidobacterium breve was positively correlated with Bifidobacteriales, while the B. longum group was negatively correlated. A higher percentage of bifidobacteria isolated from secretor-fed infants consumed 2'-fucosyllactose. Infant feces with high levels of bifidobacteria had lower milk oligosaccharide levels in the feces and higher amounts of lactate. Furthermore, feces containing different bifidobacterial species possessed differing amounts of oligosaccharides, suggesting differential consumption in situ. CONCLUSIONS: Infants fed by non-secretor mothers are delayed in the establishment of a bifidobacteria-laden microbiota. This delay may be due to difficulties in the infant acquiring a species of bifidobacteria able to consume the specific milk oligosaccharides delivered by the mother. This work provides mechanistic insight into how milk glycans enrich specific beneficial bacterial populations in infants and reveals clues for enhancing enrichment of bifidobacterial populations in at risk populations - such as premature infants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa