Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Altern Lab Anim ; 51(4): 263-288, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282515

RESUMO

Animal experimentation has been integral to drug discovery and development and safety assessment for many years, since it provides insights into the mechanisms of drug efficacy and toxicity (e.g. pharmacology, pharmacokinetics and pharmacodynamics). However, due to species differences in physiology, metabolism and sensitivity to drugs, the animal models can often fail to replicate the effects of drugs and chemicals in human patients, workers and consumers. Researchers across the globe are increasingly applying the Three Rs principles by employing innovative methods in research and testing. The Three Rs concept focuses on: the replacement of animal models (e.g. with in vitro and in silico models or human studies), on the reduction of the number of animals required to achieve research objectives, and on the refinement of existing experimental practices (e.g. eliminating distress and enhancing animal wellbeing). For the last two years, Oncoseek Bio-Acasta Health, a 3-D cell culture-based cutting-edge translational biotechnology company, has organised an annual International Conference on 3Rs Research and Progress. This series of global conferences aims to bring together researchers with diverse expertise and interests, and provides a platform where they can share and discuss their research to promote practices according to the Three Rs principles. In November 2022, the 3rd international conference, Advances in Animal Models and Cutting-Edge Research in Alternatives, took place at the GITAM University in Vishakhapatnam (AP, India) in a hybrid format (i.e. online and in-person). These conference proceedings provide details of the presentations, which were categorised under five different topic sessions. It also describes a special interactive session on in silico strategies for preclinical research in oncology, which was held at the end of the first day.


Assuntos
Experimentação Animal , Animais , Humanos , Modelos Animais , Descoberta de Drogas , Índia , Alternativas aos Testes com Animais
2.
Drug Metab Dispos ; 50(2): 140-149, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750194

RESUMO

We report here a novel in vitro experimental system, the metabolism-dependent cytotoxicity assay (MDCA), for the definition of the roles of hepatic drug metabolism in toxicity. MDCA employs permeabilized cofactor-supplemented cryopreserved human hepatocytes (MetMax Human Hepatocytes, MMHH), as an exogenous metabolic activating system, and human embryonic kidney 293 (HEK293) cells, a cell line devoid of drug-metabolizing enzyme activity, as target cells for the quantification of drug toxicity. The assay was performed in the presence and absence of cofactors for key drug metabolism pathways known to play key roles in drug toxicity: NADPH/NAD+ for phase 1 oxidation, uridine 5'-diphosphoglucuronic acid (UDPGA) for uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated glucuronidation, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for cytosolic sulfotransferase (SULT) mediated sulfation, and glutathione (GSH) for glutathione S-transferase (GST) mediated GSH conjugation. Six drugs with clinically significant hepatoxicity, resulting in liver failure or a need for liver transplantation: acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone were evaluated. All six drugs exhibited cytotoxicity enhancement by NADPH/NAD+, suggesting metabolic activation via phase 1 oxidation. Attenuation of cytotoxicity by UDPGA was observed for acetaminophen, ketoconazole, and troglitazone, by PAPS for acetaminophen, ketoconazole, and troglitazone, and by GSH for all six drugs. Our results suggest that MDCA can be applied toward the elucidation of metabolic activation and detoxification pathways, providing information that can be applied in drug development to guide structure optimization to reduce toxicity and to aid the assessment of metabolism-based risk factors for drug toxicity. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites, a key property of drugs with idiosyncratic hepatotoxicity. SIGNIFICANCE STATEMENT: Application of the metabolism-dependent cytotoxicity assay (MDCA) for the elucidation of the roles of metabolic activation and detoxification pathways in drug toxicity may provide information to guide structure optimization in drug development to reduce hepatotoxic potential and to aid the assessment of metabolism-based risk factors. Glutathione (GSH) detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites that may be applied toward the evaluation of idiosyncratic hepatotoxicity.


Assuntos
Amiodarona , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Ativação Metabólica , Amiodarona/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclofosfamida/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Cetoconazol/metabolismo , Piperazinas , Triazóis , Troglitazona
3.
Drug Metab Dispos ; 49(9): 790-802, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34135090

RESUMO

Hepatic gene expression as a function of culture duration was evaluated in prolonged cultured human hepatocytes. Human hepatocytes from seven donors were maintained as near-confluent collagen-Matrigelsandwich cultures, with messenger RNA expression for genes responsible for key hepatic functions quantified by real-time polymerase chain reaction at culture durations of 0 (day of plating), 2, 7, 9, 16, 23, 26, 29, 36, and 43 days. Key hepatocyte genes were evaluated, including the differentiation markers albumin, transferrin, and transthyretin; the hepatocyte-specific asialoglycoprotein receptor 1 cytochrome P450 isoforms CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A7; uptake transporter isoforms SLC10A1, SLC22A1, SLC22A7, SLCO1B1, SLCO1B3, and SLCO2B1; efflux transporter isoforms ATP binding cassette (ABC)B1, ABCB11, ABCC2, ABCC3, ABCC4, and ABCG2; and the nonspecific housekeeping gene hypoxanthine ribosyl transferase 1 (HPRT1). The well established dedifferentiation phenomenon was observed on day 2, with substantial (>80%) decreases in gene expression in day 2 cultures observed for all genes evaluated except HPRT1 and efflux transporters ABCB1, ABCC2, ABCC3 (<50% decrease in expression), ABCC4 (>400% increase in expression), and ABCG2 (no decrease in expression). All genes with a >80% decrease in expression were found to have increased levels of expression on day 7, with peak expression observed on either day 7 or day 9, followed by a gradual decrease in expression up to the longest duration evaluated of 43 days. Our results provide evidence that cultured human hepatocytes undergo redifferentiation upon prolonged culturing. SIGNIFICANCE STATEMENT: This study reports that although human hepatocytes underwent dedifferentiation upon 2 days of culture, prolonged culturing resulted in redifferentiation based on gene expression of differentiation markers, uptake and efflux transporters, and cytochrome P450 isoforms. The observed redifferentiation suggests that prolonged (>7 days) culturing of human hepatocyte cultures may represent an experimental approach to overcome the initial dedifferentiation process, resulting in "stabilized" hepatocytes that can be applied toward the evaluation of drug properties requiring an extended period of treatment and evaluation.


Assuntos
Técnicas de Cultura de Células , Criopreservação/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos , Proteínas de Membrana Transportadoras/metabolismo , RNA Mensageiro/metabolismo , Albuminas/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Células Cultivadas/metabolismo , Células Cultivadas/patologia , Colágeno/farmacologia , Combinação de Medicamentos , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Isoenzimas , Laminina/farmacologia , Proteoglicanas/farmacologia , Fatores de Tempo , Transferrina/metabolismo
4.
Drug Metab Dispos ; 48(10): 980-992, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32636209

RESUMO

Elements of key enteric drug metabolism and disposition pathways are reviewed to aid the assessment of the applicability of current cell-based enteric experimental systems for the evaluation of enteric metabolism and drug interaction potential. Enteric nuclear receptors include vitamin D receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, liver X receptor, aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor. Enteric drug metabolizing enzyme pathways include both cytochrome P450 (P450) and non-P450 drug metabolizing enzymes based on gene expression, proteomics, and activity. Both uptake and efflux transporters are present in the small intestine, with P-glycoprotein found to be responsible for most drug-drug and food-drug interactions. The cell-based in vitro enteric systems reviewed are 1) immortalized cell line model: the human colon adenocarcinoma (Caco-2) cells; 2) human stem cell-derived enterocyte models: stem cell enteric systems, either from intestinal crypt cells or induced pluripotent stem cells; and 3) primary cell models: human intestinal slices, cryopreserved human enterocytes, permeabilized cofactor-supplemented (MetMax) cryopreserved human enterocytes, and cryopreserved human intestinal mucosa. The major deficiency with both immortalized cell lines and stem cell-derived enterocytes is that drug metabolizing enzyme activities, although they are detectable, are substantially lower than those for the intestinal mucosa in vivo. Human intestine slices, cryopreserved human enterocytes, MetMax cryopreserved human enterocytes, and cryopreserved human intestinal mucosa retain robust enteric drug metabolizing enzyme activity and represent appropriate models for the evaluation of metabolism and metabolism-dependent drug interaction potential of orally administered xenobiotics including drugs, botanical products, and dietary supplements. SIGNIFICANCE STATEMENT: Enteric drug metabolism plays an important role in the bioavailability and metabolic fate of orally administered drugs as well as in enteric drug-drug and food-drug interactions. The current status of key enteric drug metabolism and disposition pathways and in vitro human cell-based enteric experimental systems for the evaluation of the metabolism and drug interaction potential of orally administered substances is reviewed.


Assuntos
Produtos Biológicos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Mucosa Intestinal/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/farmacocinética , Administração Oral , Disponibilidade Biológica , Produtos Biológicos/administração & dosagem , Células CACO-2 , Criopreservação , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Enterócitos , Humanos , Taxa de Depuração Metabólica , Especificidade da Espécie , Células-Tronco , Xenobióticos/administração & dosagem
5.
Drug Metab Dispos ; 48(10): 1084-1091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719085

RESUMO

Commercial formulations of 29 commonly used herbal supplements (HSs) and grapefruit juice were evaluated for drug interaction potential via quantification of their CYP3A inhibitory potential in two in vitro experimental models of human small intestine, cryopreserved human intestinal mucosa (CHIM), and cryopreserved human enterocytes (CHEs). Two CYP3A substrates were used-in the studies with CHIM, CYP3A activity was quantified via liquid chromatography tandem mass spectrometry quantification of midazolam 1'-hydroxylation, whereas in CHE, luciferin-IPA metabolism to luciferin was quantified by luminescence. Upon treatment of CHIM with the estimated lumen concentration of the HS upon each oral administration (manufacturers' recommended dosage dissolved in 200 ml of culture medium), >80% CYP3A inhibition was observed for green tea extract, St. John's wort, valerian root, horehound, and grapefruit juice. Less than 50% inhibition was observed for fenugreek, aloe vera, guarana, soy isoflavone, maca, echinacea, spirulina, evening primrose, milk thistle, cranberry, red yeast rice, rhodiola, ginkgo biloba, turmeric, curcumin, white kidney bean, garlic, cinnamon, saw palmetto berries, panax ginseng, black elderberry, wheat grass juice, flaxseed oil, black cohosh, and ginger root. The results were confirmed in a a dose-response study with HSs obtained from three suppliers for the four inhibitory HSs (green tea extract, horehound, St. John's wort, valerian root) and three representative noninhibitory HSs (black cohosh, black elderberry, echinacea). Similar results were obtained with the inhibitory HSs in CHE. The results illustrate that CHIM and CHE represent physiologically relevant in vitro experimental models for the evaluation of drug interaction potential of herbal supplements. Based on the results, green tea extract, horehound, St. John's wort, and valerian root may cause drug interactions with orally administered drugs that are CYP3A substrates, as was observed for grapefruit juice. SIGNIFICANCE STATEMENT: In vitro evaluation of 29 popular herbal supplements in cryopreserved human intestinal mucosa identified green tea extract, horehound, St. John's wort, and valerian root to have CYP3A inhibitory potential similar to that for grapefruit juice, suggesting their potential to have clinically significant pharmacokinetic interaction with orally administered drugs that are CYP3A substrates. The results suggest that cryopreserved human intestinal mucosa can be used for in vitro evaluation of drug interactions involving enteric drug metabolism.


Assuntos
Citrus paradisi/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Suplementos Nutricionais/efeitos adversos , Sucos de Frutas e Vegetais/efeitos adversos , Acetais/administração & dosagem , Acetais/farmacocinética , Administração Oral , Adulto , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Enterócitos , Feminino , Luciferina de Vaga-Lumes/administração & dosagem , Luciferina de Vaga-Lumes/análogos & derivados , Luciferina de Vaga-Lumes/farmacocinética , Interações Alimento-Droga , Interações Ervas-Drogas , Humanos , Mucosa Intestinal , Masculino , Midazolam/administração & dosagem , Midazolam/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
6.
Drug Metab Dispos ; 48(7): 528-536, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350063

RESUMO

Current challenges in accurately predicting intestinal metabolism arise from the complex nature of the intestine, leading to limited applicability of available in vitro tools as well as knowledge deficits in intestinal physiology, including enzyme abundance. In particular, information on regional enzyme abundance along the small intestine is lacking, especially for non-cytochrome P450 enzymes such as carboxylesterases (CESs), UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). We used cryopreserved human intestinal mucosa samples from nine donors as an in vitro surrogate model for the small intestine and performed liquid chromatography tandem mass spectrometry-based quantitative proteomics for 17 non-cytochrome P450 enzymes using stable isotope-labeled peptides. Relative protein quantification was done by normalization with enterocyte marker proteins, i.e., villin-1, sucrase isomaltase, and fatty acid binding protein 2, and absolute protein quantification is reported as picomoles per milligram of protein. Activity assays in glucuronidations and sequential metabolisms were conducted to validate the proteomics findings. Relative or absolute quantifications are reported for CES1, CES2, five UGTs, and four SULTs along the small intestine: duodenum, jejunum, and ileum for six donors and in 10 segments along the entire small intestine (A-J) for three donors. Relative quantification using marker proteins may be beneficial in further controlling for technical variabilities. Absolute quantification data will allow for scaling factor generation and in vivo extrapolation of intestinal clearance using physiologically based pharmacokinetic modeling. SIGNIFICANCE STATEMENT: Current knowledge gaps exist in intestinal protein abundance of non-cytochrome P450 enzymes. Here, we employ quantitative proteomics to measure non-cytochrome P450 enzymes along the human small intestine in nine donors using cryopreserved human intestinal mucosa samples. Absolute and relative abundances reported here will allow better scaling of intestinal clearance.


Assuntos
Carboxilesterase/análise , Glucuronosiltransferase/análise , Mucosa Intestinal/enzimologia , Intestino Delgado/enzimologia , Sulfotransferases/análise , Adulto , Carboxilesterase/metabolismo , Clopidogrel/farmacocinética , Ensaios Enzimáticos , Feminino , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Irinotecano/farmacocinética , Masculino , Pessoa de Meia-Idade , Proteômica , Sulfotransferases/metabolismo , Testosterona/farmacocinética , Adulto Jovem
7.
J Appl Toxicol ; 40(10): 1421-1434, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32488907

RESUMO

In vitro metabolic stability of nine fragrance chemicals: p-tolyl acetate, cashmeran, ethylene brassylate, celestolide, galaxolide, traseolide, ambretone, tonalide and pentadecanolide, was evaluated in trout and human hepatocytes. The compounds were incubated with trout hepatocytes at 12°C and human hepatocytes at 37°C. Quantification of compound disappearance with time was performed using gas chromatography/mass spectrometry. in vivo hepatic intrinsic clearance values were calculated from the in vitro data. Significant metabolism was observed with trout hepatocytes for five of the nine fragrance chemicals, while all nine were metabolized significantly with human hepatocytes. Previously published models were used to examine expected bioaccumulation and persistence in whole organisms. Calculated half-lives due to metabolism of the nine chemicals are significantly shorter for humans than trout: <1 hour and <1 day, respectively. For all chemicals with demonstrated hepatic metabolism, the models indicate a lack of accumulation. For those where metabolism was demonstrated in trout, calculated bioconcentration factors would not be classified as bioaccumulative under prevailing regulatory systems.


Assuntos
Células Cultivadas/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Odorantes , Oncorhynchus mykiss , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Humanos
8.
Drug Metab Dispos ; 47(10): 1032-1039, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31375472

RESUMO

Here, we report the application of a novel hepatocyte system, the cofactor-supplemented permeabilized cryopreserved human hepatocytes [MetMax human hepatocytes (MMHHs)] in a higher-throughput 384-well plate assay for the evaluation of cytochrome P450 (P450) inhibition. The assay was created to develop physiologically relevant P450 inhibition information, taking advantage of the complete organelle composition and their associated drug-metabolizing enzymes of the MMHH but with the ease of use of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and thaw and use without centrifugation and microscopic evaluation as required for intact hepatocytes. Nine key P450 isoforms for drug metabolism (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were evaluated using multiple isoform-selective inhibitors. Results with MMHH were found to be comparable to those obtained with intact cryopreserved human hepatocytes (CHHs). Isoform-selective drug-metabolizing enzyme pathways evaluated were phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), s-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation and testosterone 6ß-hydroxylation (CYP3A4). The Km values obtained with MMHHs were comparable with those reported in the literature for CHHs. Using substrate concentrations at or near Km values, the IC50 values for the standard inhibitors against the P450 activities were found to be comparable between MMHHs and CHHs, with 73% and 84% of values falling within 2-fold and 3-fold, respectively, from the line of unity. The results indicate that MMHHs can be an efficient experimental system for the evaluation of P450 inhibition in hepatocytes. SIGNIFICANCE STATEMENT: MetMax human hepatocytes (MMHHs) are cofactor-supplemented cryopreserved human hepatocytes with the complete drug-metabolizing enzyme pathways of the conventional hepatocytes but with the convenience of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and direct thaw and use without a need for centrifugation and microscopic examination. Here, we report the application of MMHH in a high-throughput assay in a 384-well plate format for the evaluation of cytochrome P450 (P450) inhibition. Our results show that data obtained with MMHH are similar to those with conventional hepatocytes, suggesting that the MMHH 384-well P450 inhibition assay can be used routinely for the evaluation of drug-drug interaction potential of new chemical entities in drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Criopreservação , Meios de Cultura/química , Interações Medicamentosas , Hepatócitos , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Microssomos Hepáticos
9.
Xenobiotica ; 49(7): 852-862, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30132394

RESUMO

A thorough understanding of species-dependent differences in hepatic uptake transporters is critical for predicting human pharmacokinetics (PKs) from preclinical data. In this study, the activities of organic anion transporting polypeptide (OATP/Oatp), organic cation transporter 1 (OCT1/Oct1), and sodium-taurocholate cotransporting polypeptide (NTCP/Ntcp) in cultured rat, dog, monkey and human hepatocytes were compared. The activities of hepatic uptake transporters were evaluated with respect to culture duration, substrate and species-dependent differences in hepatocytes. Longer culture duration reduced hepatic uptake transporter activities across species except for Oatp and Ntcp in rats. Comparable apparent Michaelis-Menten constant (Km,app) values in hepatocytes were observed across species for atorvastatin, estradiol-17ß-glucuronide and metformin. The Km,app values for rosuvastatin and taurocholate were significantly different across species. Rat hepatocytes exhibited the highest Oatp percentage of uptake transporter-mediated permeation clearance (PSinf,act) while no difference in %PSinf,act of probe substrates were observed across species. The in vitro hepatocyte inhibition data in rats, monkeys and humans provided reasonable predictions of in vivo drug-drug interaction (DDIs) between atorvastatin/rosuvastatin and rifampin. These findings suggested that using human hepatocytes with a short culture time is the most robust preclinical model for predicting DDIs for compounds exhibiting active hepatic uptake in humans.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Hepatócitos/metabolismo , Modelos Biológicos , Fator 1 de Transcrição de Octâmero/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Adulto , Animais , Atorvastatina/farmacocinética , Atorvastatina/farmacologia , Transporte Biológico Ativo , Estradiol/análogos & derivados , Estradiol/farmacocinética , Estradiol/farmacologia , Feminino , Hepatócitos/citologia , Humanos , Masculino , Metformina/farmacocinética , Metformina/farmacologia , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley
10.
Drug Metab Dispos ; 46(11): 1608-1616, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29363498

RESUMO

We report here a novel experimental system, cryopreserved MetMax human hepatocytes (MMHHs), for in vitro drug metabolism studies. MMHHs consist of cofactor-supplemented permeabilized cryopreserved human hepatocytes. The use procedures for MMHHs are significantly simplified from that for conventional cryopreserved human hepatocytes (CCHHs): 1) storage at -80°C instead of in liquid nitrogen and 2) usage directly after thawing without centrifugation and microscopic evaluation of cell density and viability and cell density adjustment. In this study, we compared MMHHs and CCHHs in CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP2J2, monoamine oxidase A, aldehyde oxidase, flavin-containing monooxygenase, UDP-glucuronyl transferase, SULT, N-acetyltransferase 1, and acetaminophen glutathione (GSH) conjugation activities based on liquid chromatography-tandem mass spectrometry quantification of substrate metabolism. MMHHs were prepared from CCHHs consisting of hepatocytes pooled from 10 individual donors. The drug metabolizing enzyme activities of both CCHHs and MMHHs were cell concentration and time dependent, with specific activities of MMHHs ranging from 27.2% (carboxylesterase 2) to 234.2% (acetaminophen GSH conjugation) of that for CCHHs. As observed in CCHHs, sequential oxidation and conjugation was observed in MMHHs for coumarin, 7-ethoxycoumarin, and acetaminophen. 7-Hydroxycoumarin conjugation results showed that metabolic pathways in MMHHs could be selected via the choice of cofactors, with glucuronidation but not sulfation observed in the presence of UDP-glucuronic acid and not 3-phosphoadenosine-5-phosphosulfate, and vice versa. Results with noncytotoxic and cytotoxic concentrations of acetaminophen showed that drug metabolism was compromised in CCHHs but not in MMHHs. Our results suggest that the MMHHs system represents a convenient and robust in vitro experimental system for the evaluation of drug metabolism.


Assuntos
Coenzimas/metabolismo , Hepatócitos/metabolismo , Inativação Metabólica/fisiologia , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Criopreservação/métodos , Glucuronosiltransferase/metabolismo , Humanos , Taxa de Depuração Metabólica/fisiologia , Redes e Vias Metabólicas/fisiologia , Oxirredução
11.
Drug Metab Dispos ; 46(11): 1562-1571, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006371

RESUMO

We report here a novel in vitro enteric experimental system, cryopreserved human intestinal mucosa (CHIM), for the evaluation of enteric drug metabolism, drug-drug interaction, drug toxicity, and pharmacology. CHIM was isolated from the small intestines of four human donors. The small intestines were first dissected into the duodenum, jejunum, and ileum, followed by collagenase digestion of the intestinal lumen. The isolated mucosa was gently homogenized to yield multiple cellular fragments, which were then cryopreserved in a programmable liquid cell freezer and stored in liquid nitrogen. After thawing and recovery, CHIM retained robust cytochrome P450 (P450) and non-P450 drug-metabolizing enzyme activities and demonstrated dose-dependent induction of transcription of CYP24A1 (approximately 300-fold) and CYP3A4 (approximately 3-fold) by vitamin D3 as well as induction of CYP3A4 (approximately 3-fold) by rifampin after 24 hours of treatment. Dose-dependent decreases in cell viability quantified by cellular ATP content were observed for naproxen and acetaminophen, with higher enterotoxicity observed for naproxen, consistent with that observed in humans in vivo. These results suggest that CHIM may be a useful in vitro experimental model for the evaluation of enteric drug properties, including drug metabolism, drug-drug interactions, and drug toxicity.


Assuntos
Indutores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica/fisiologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Taxa de Depuração Metabólica/fisiologia , Preparações Farmacêuticas/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Criopreservação/métodos , Interações Medicamentosas/fisiologia , Humanos
12.
Biopharm Drug Dispos ; 39(2): 99-115, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29243851

RESUMO

The vitamin D-deficient model, established in the C57BL/6 mouse after 8 weeks of feeding vitamin D-deficient diets in the absence or presence of added calcium, was found associated with elevated levels of plasma parathyroid hormone (PTH) and plasma and liver cholesterol, and a reduction in cholesterol 7α-hydroxylase (Cyp7a1, rate-limiting enzyme for cholesterol metabolism) and renal Oat3 mRNA/protein expression levels. However, there was no change in plasma calcium and phosphate levels. Appraisal of the liver revealed an up-regulation of mRNA expressions of the small heterodimer partner (Shp) and attenuation of Cyp7a1, which contributed to hypercholesterolemia in vitamin D-deficiency. When vitamin D-sufficient or D-deficient mice were further rendered hypercholesterolemic with 3 weeks of feeding the respective, high fat/high cholesterol (HF/HC) diets, treatment with 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], active vitamin D receptor (VDR) ligand, or vitamin D (cholecalciferol) to HF/HC vitamin D-deficient mice lowered the cholesterol back to baseline levels. Cholecalciferol treatment partially restored renal Oat3 mRNA/protein expression back to that of vitamin D-sufficient mice. When the protein expression of protein kinase C (PKC), a known, negative regulator of Oat3, was examined in murine kidney, no difference in PKC expression was observed for any of the diets with/without 1,25(OH)2 D3 /cholecalciferol treatment, inferring that VDR regulation of renal Oat3 did not involve PKC in mice. As expected, plasma calcium levels were not elevated by cholecalciferol treatment of vitamin D-deficient mice, while 1,25(OH)2 D3 treatment led to hypercalcemia. In conclusion, vitamin D-deficiency resulted in down-regulation of liver Cyp7a1 and renal Oat3, conditions that are alleviated upon replenishment of cholecalciferol.


Assuntos
Colesterol 7-alfa-Hidroxilase/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Rim/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/biossíntese , Deficiência de Vitamina D/enzimologia , Deficiência de Vitamina D/genética , Animais , Ácidos e Sais Biliares/metabolismo , Calcifediol/sangue , Cálcio/sangue , Cálcio/farmacologia , Colecalciferol/farmacologia , Colesterol/sangue , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/sangue , Colesterol 7-alfa-Hidroxilase/genética , Dieta/métodos , Vesícula Biliar/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Hormônio Paratireóideo/sangue , Vitamina D/análogos & derivados , Vitamina D/sangue
13.
J Pharmacol Exp Ther ; 360(1): 174-191, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27789682

RESUMO

The humanized liver mouse model is being exploited increasingly for human drug metabolism studies. However, its model stability, intercommunication between human hepatocytes and mouse nonparenchymal cells in liver and murine intestine, and changes in extrahepatic transporter and enzyme expressions have not been investigated. We examined these issues in FRGN [fumarylacetoacetate hydrolase (Fah-/-), recombination activating gene 2 (Rag2-/-), and interleukin 2 receptor subunit gamma (IL-2rg -/-) triple knockout] on nonobese diabetic (NOD) background] and chimeric mice: mFRGN and hFRGN (repopulated with mouse or human hepatocytes, respectively). hFRGN mice showed markedly higher levels of liver cholesterol, biliary bilirubin, and bile acids (liver, bile, and plasma; mainly human forms, but also murine bile acids) but lower transforming growth factor beta receptor 2 (TGFBR2) mRNA expression levels (10%) in human hepatocytes and other proliferative markers in mouse nonparenchymal cells (Tgf-ß1) and cholangiocytes [plasma membrane-bound, G protein-coupled receptor for bile acids (Tgr5)], suggestive of irregular regeneration processes in hFRGN livers. Changes in gene expression in murine intestine, kidney, and brain of hFRGN mice, in particular, induction of intestinal farnesoid X receptor (Fxr) genes: fibroblast growth factor 15 (Fgf15), mouse ileal bile acid binding protein (Ibabp), small heterodimer partner (Shp), and the organic solute transporter alpha (Ostα), were observed. Proteomics revealed persistence of remnant murine proteins (cyotchrome P450 7α-hydroxylase (Cyp7a1) and other enzymes and transporters) in hFRGN livers and suggest the likelihood of mouse activity. When compared with normal human liver tissue, hFRGN livers showed lower SHP mRNA and higher CYP7A1 (300%) protein expression, consequences of tß- and tα-muricholic acid-mediated inhibition of the FXR-SHP cascade and miscommunication between intestinal Fgf15 and human liver fibroblast growth factor receptor 4 (FGFR4), as confirmed by the unchanged hepatic pERK/total ERK ratio. Dysregulation of hepatocyte proliferation and bile acid homeostasis in hFRGN livers led to hepatotoxicity, gallbladder distension, liver deformity, and other extrahepatic changes, making questionable the use of the preparation for drug metabolism studies.


Assuntos
Ácidos e Sais Biliares/metabolismo , Homeostase , Intestinos/citologia , Fígado/citologia , Fígado/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Ácidos e Sais Biliares/sangue , Criança , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hidrolases/deficiência , Hidrolases/genética , Masculino , Camundongos , Receptores de Interleucina-2/deficiência , Receptores de Interleucina-2/genética
14.
Drug Metab Dispos ; 45(6): 686-691, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396528

RESUMO

We report in this work successful isolation and cryopreservation of enterocytes from human small intestine. The enterocytes were isolated by enzyme digestion of the intestinal lumen, followed by partial purification via differential centrifugation. The enterocytes were cryopreserved directly after isolation without culturing to maximize retention of in vivo drug-metabolizing enzyme activities. Post-thaw viability of the cryopreserved enterocytes was consistently over 80% based on trypan blue exclusion. Cryopreserved enterocytes pooled from eight donors (four male and four female) were evaluated for their metabolism of 14 pathway-selective substrates: CYP1A2 (phenacetin hydroxylation), CYP2A6 (coumarin 7-hydroxylation), CYP2B6 (bupropion hydroxylation), CYP2C8 (paclitaxel 6α-hydroxylation), CYP2C9 (diclofenac 4-hydroxylation), CYP2C19 (S-mephenytoin 4-hydroxylation), CYP2D6 (dextromethorphan hydroxylation), CYP2E1 (chlorzoxazone 6-hydroxylation), CYP3A4 (midazolam 1'-hydroxylation and testosterone 6ß-hydroxylation), CYP2J2 (astemizole O-demethylation), UDP-glucuronosyltransferase (UGT; 7-hydroxycoumarin glucuronidation), sulfotransferase (SULT; 7-hydroxycoumarin sulfation), and carboxylesterase 2 (CES2; irinotecan hydrolysis) activities. Quantifiable activities were observed for CYP2C8, CYP2C9, CYP2C19, CYP2E1, CYP3A4, CYPJ2, CES2, UGT, and SULT, but not for CYP1A2, CYP2A6, CYP2B6, and CYP2D6. Enterocytes from all 24 donors were then individually evaluated for the quantifiable drug metabolism pathways. All demonstrated quantifiable activities with the expected individual variations. Our results suggest that cryopreserved human enterocytes represent a physiologically relevant and convenient in vitro experimental system for the evaluation of intestinal metabolism, akin to cryopreserved human hepatocytes for hepatic metabolism.


Assuntos
Avaliação de Medicamentos/métodos , Enterócitos/citologia , Enterócitos/metabolismo , Adolescente , Adulto , Técnicas de Cultura de Células/métodos , Cromatografia Líquida , Criopreservação/métodos , Enterócitos/enzimologia , Feminino , Humanos , Intestino Delgado/citologia , Masculino , Pessoa de Meia-Idade , Farmacocinética , Espectrometria de Massas em Tandem , Adulto Jovem
15.
Drug Metab Dispos ; 44(9): 1524-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27342868

RESUMO

Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.


Assuntos
Quimera , Enzimas/metabolismo , Fígado/enzimologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Arilsulfotransferase/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Fígado/irrigação sanguínea , Camundongos , Microcirculação
16.
Apoptosis ; 20(10): 1388-409, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286853

RESUMO

Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of substrate alliin with the enzyme alliinase (EC 4.4.1.4). Allicin has been shown to be toxic to several mammalian cells in vitro in a dose-dependent manner. In the present study this cytotoxicity was taken to advantage to develop a novel approach to cancer treatment, based on site directed generation of allicin. Alliinase was chemically conjugated to a monoclonal antibody (mAb) which was directed against a specific pancreatic cancer marker, CA19-9. After the CA19-9 mAb-alliinase conjugate was bound to targeted pancreatic cancer cells (MIA PaCa-2 cells), on addition of alliin, the cancer cell-localized alliinase produced allicin, which effectively induced apoptosis in MIA PaCa-2 cells. Specificity of anticancer activity of in situ generated allicin was demonstrated using a novel in vitro system-integrated discrete multiple organ co-culture technique. Further, allicin-induced caspase-3 expression, DNA fragmentation, cell cycle arrest, p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression, ROS generation, GSH depletion, and led to various epigenetic modifications which resulted in stimulation of apoptosis. This approach offers a new therapeutic strategy, wherein alliin and alliinase-bound antibody work together to produce allicin at targeted locations which would reverse gene silencing and suppress cancer cell growth, suggesting that combination of these targeted agents may improve pancreatic cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Ácidos Sulfínicos/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/imunologia , Apoptose/efeitos dos fármacos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Dissulfetos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Ácidos Sulfínicos/química , Tubulina (Proteína)/metabolismo , Neoplasias Pancreáticas
17.
Hepatology ; 60(5): 1741-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24723460

RESUMO

UNLABELLED: Liver eosinophilia has been associated with incidences of drug-induced liver injury (DILI) for more than 50 years, although its role in this disease has remained largely unknown. In this regard, it was recently shown that eosinophils played a pathogenic role in a mouse model of halothane-induced liver injury (HILI). However, the signaling events that drove hepatic expression of eosinophil-associated chemokines, eotaxins, eosinophil infiltration, and subsequent HILI were unclear. We now provide evidence implicating hepatic epithelial-derived cytokine thymic stromal lymphopoietin (TSLP) and type 2 immunity, in particular, interleukin-4 (IL-4) production, in mediating hepatic eosinophilia and injury during HILI. TSLP was constitutively expressed by mouse hepatocytes and increased during HILI. Moreover, the severity of HILI was reduced in mice deficient in either the TSLP receptor (TSLPR) or IL-4 and was accompanied by decreases in serum levels of eotaxins and hepatic eosinophilia. Similarly, concanavalin A-induced liver injury, where type 2 cytokines and eosinophils play a significant role in its pathogenesis, was also reduced in TSLPR-deficient mice. Studies in vitro revealed that mouse and human hepatocytes produce TSLP and eotaxins in response to treatment with combinations of IL-4 and proinflammatory cytokines IL-1ß and tumor necrosis factor alpha. CONCLUSION: This report provides the first evidence implicating roles for hepatic TSLP signaling, type 2 immunity, and eosinophilia in mediating liver injury caused by a drug.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citocinas/metabolismo , Halotano/efeitos adversos , Interleucina-4/metabolismo , Animais , Concanavalina A , Feminino , Hepatite Animal/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Linfopoietina do Estroma do Timo
18.
Biochem Pharmacol ; 189: 114374, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33358826

RESUMO

We report here the evaluation of a novel in vitro experimental model, prolonged cultured human hepatocytes (PCHC), as an experimental system to evaluate the potency and duration of effects of oligonucleotide therapeutics. A novel observation was made on the redifferentiation of PCHC upon prolonged culturing based on mRNA profiling of characteristic hepatic differentiation marker genes albumin, transferrin, and transthyretin. Consistent with the known de-differentiation of cultured human hepatocytes, decreases in marker gene expression were observed upon culturing of the hepatocytes for 2 days. A novel observation of re-differentiation was observed on day 7 as demonstrated by an increase in expression of the marker genes to levels similar to that observed on the first day of culture. The expression of the differentiation marker genes was highest on day 7, followed by a gradual decrease but remained higher than that on day 2 for up to the longest culture duration evaluated of 41 days. The redifferentiation phenomenon suggests that PCHC may be useful for the evaluation of the duration of effects of oligonucleotide therapeutics on gene expression in human hepatocytes. A proof of concept study was thereby conducted with PCHC with a GalNAc-conjugated siRNA targeting human hypoxanthine phosphoribosyl transferase1 (HPRT1). HPRT1 mRNA expression in siRNA-treated cultures decreased to 21% of that in untreated hepatocytes on day 1, <10% from days 2 to 12, <20% from days 16 to 33, and eventually recovered to 64% by day 41. Our results suggest that PCHC represent a clinically-relevant cost- and time-efficient experimental tool to aid in the evaluation of GalNAc-siRNA silencing activity, providing information on both efficacy and duration of efficacy. PCHC may be applicable in the drug development setting as a species- and cell type-relevant experimental tool to aid the development of oligonucleotide therapeutics.


Assuntos
Acetilgalactosamina/biossíntese , Técnicas de Cultura de Células/métodos , Inativação Gênica/fisiologia , Hepatócitos/metabolismo , Hipoxantina Fosforribosiltransferase/biossíntese , RNA Interferente Pequeno/administração & dosagem , Acetilgalactosamina/antagonistas & inibidores , Acetilgalactosamina/genética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Inativação Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/genética , RNA Interferente Pequeno/genética
19.
J Pharm Sci ; 110(1): 376-387, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122051

RESUMO

Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.


Assuntos
Hepatócitos , Transportadores de Ânions Orgânicos , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pravastatina/metabolismo
20.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982436

RESUMO

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.


Assuntos
Alternativas ao Uso de Animais/métodos , Técnicas de Cultura de Células em Três Dimensões , Avaliação Pré-Clínica de Medicamentos/métodos , Alternativas ao Uso de Animais/normas , Células Cultivadas , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/normas , Humanos , Intestinos/citologia , Rim/citologia , Fígado/citologia , Neurônios , Esferoides Celulares , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Estados Unidos , United States Food and Drug Administration/normas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa