Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3010-3022, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278519

RESUMO

The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.

2.
Nano Lett ; 23(5): 1858-1864, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848293

RESUMO

The evolution of Pt nanoparticles in proton-exchanged membrane fuel cells is monitored before and after electrochemical potential cycling, using 2D and 3D identical location aberration-corrected transmission electron microscopy. This work demonstrates that 2D images might be a challenge to interpret due to the 3D nature of the carbon support. Thus, it is critical to combine both 2D and 3D observations to be able to fully understand the mechanisms associated with the durability of Pt catalyst nanoparticles. In particular, this investigation reveals that the mechanism of particle migration followed by coalescence is operative mainly across short distances (<0.5 nm). This work also shows that new Pt particles appear on the carbon support, as the result of Pt dissolution, followed by the formation of clusters, which grow by Ostwald ripening. This mechanism of Ostwald ripening is also responsible for changes in shape and particle growth, which later may result in coalescence.

3.
J Am Chem Soc ; 145(32): 17643-17655, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540107

RESUMO

Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt-1 at 0.9 ViR-free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt-1 and a current density of 1.63 A cm-2 at 0.7 V under traditional light-duty vehicle (LDV) H2-air conditions (150 kPaabs and 0.10 mgPt cm-2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm-2) delivered 1.75 A cm-2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.

4.
Small ; 19(15): e2206947, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631255

RESUMO

Two large barriers are impeding the wide implementation of electric vehicles, namely driving-range and cost, primarily due to the low specific energy and high cost of mono-valence cathodes used in lithium-ion batteries. Iron is the ideal element for cathode materials considering its abundance, low cost and toxicity. However, the poor reversibility of (de)lithiation and low electronic conductivity prevent iron-based high specific energy multi-valence conversion cathodes from practical applications. In this work, a sustainable FeOF nanocomposite is developed with extraordinary performance. The specific capacity and energy reach 621 mAh g-1 and 1124 Wh kg-1 with more than 100 cycles, which triples the specific capacity, and doubles the specific energy of current mono-valence intercalation LiCoO2 . This is the result of an effective approach, combing the nanostructured FeOF with graphene, realized by making the (de)lithiation reversible by immobilizing FeOF nanoparticles and the discharge products over the graphene surface and providing the interparticle electric conduction. Importantly, it demonstrates that introducing small amount of graphene can create new materials with desired properties, opening a new avenue for altering the (de)lithiation process. Such extraordinary performance represents a significant breakthrough in developing sustainable conversion materials, eventually overcoming the driving range and cost barriers.

5.
Microsc Microanal ; 20(3): 964-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24559610

RESUMO

In the preparation process for scanning electron microscopy (SEM), flexed silkworm embryos typically assume several curled shapes with irregular postures that obscure morphological details during SEM observation. We describe a preparation technique based on glycerol substitution for better SEM visualization of straight and flat silkworm embryos. Glycerol has high viscosity, low vapor pressure, and sufficient electrical conductivity. Silkworm embryos were infiltrated with glycerol and arranged in a straight posture or flattened using a cover slip. Samples were directly observed by SEM without additional dehydration, drying, or coating procedures. The complete ventral side could be easily viewed in one image. Recoating alleviated the charging phenomenon. This represents a simple method for preparation of straight and flat samples from curled biological specimens for SEM observation.


Assuntos
Bombyx/fisiologia , Entomologia/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Embrião não Mamífero/fisiologia , Glicerol/metabolismo , Postura
6.
Adv Mater ; 35(32): e2300907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132284

RESUMO

Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35666990

RESUMO

PtM (M = 3d transition metals) alloys are known as the promising oxygen reduction reaction catalysts and have been considered as the replacement of pure Pt catalysts for the commercialization of proton exchange membrane fuel cells. Although great progress has been made in the past three decades, the performance and durability of PtM catalysts still face stringent challenges from practical applications. Functionalization of a catalyst carbon support with nitrogen-contained groups can add charges onto its surface, which can be utilized to build a more complete ionomer/catalyst interface, to reduce the catalyst particle size, and to improve particle size distribution. Nitriding of PtNi catalysts can effectively improve the catalyst activity and stability by the modification of lattice strain. Hereby, we propose a synergistic approach of combining polybenzimidazole-grafted Vulcan XC72 carbon as the catalyst carbon support and the nitriding of PtNi to develop PtNiN/XC72-polybenzimidazole catalysts. Such PtNiN/XC72-PBI catalysts exhibit the excellent performance of fuel cell membrane electrode assembly (i.e., mass activity, 440 mA mgPt-1; electrochemical surface area, 51 m2 gPt-1; and rated power density, 836 mW cm-2) as well as promising catalyst stability. The developed PtNiN/XC72-PBI meets the US DOE 2020 targets of mass activity for the fuel cell catalysts. This work provides a novel approach and a promising pathway on the development of the catalyst using such a synergistic approach─modification of the catalyst structure by nitrogen doping and functionalization of carbon support by polybenzimidazole for both high performance and high durability.

8.
Chem Commun (Camb) ; 58(95): 13226-13229, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354121

RESUMO

We have developed a novel molecular design that enables six-electron redox activity in fused phenazine-based organic scaffolds. Combined electrochemical and spectroscopic tests successfully confirm the two-step 6e- redox mechanism. This work offers an opportunity for achieving energy-dense redox flow batteries, on condition that the solubility and stability issues are addressed.


Assuntos
Fontes de Energia Elétrica , Elétrons , Oxirredução , Solubilidade
9.
ACS Appl Mater Interfaces ; 14(18): 20418-20429, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35230077

RESUMO

The recent surge in interest of proton exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles increases the demand on the durability of oxygen reduction reaction electrocatalysts used in the fuel cell cathode. This prioritizes efforts aimed at understanding and subsequently controlling catalyst degradation. Identical-location scanning transmission electron microscopy (IL-STEM) is a powerful method that enables precise characterization of degradation processes in individual catalyst nanoparticles across various stages of cycling. Recreating the degradation processes that occur in PEMFC membrane electrode assemblies (MEAs) within the aqueous cell used for IL-STEM experiments is vital for generating an accurate understanding of these processes. In this work, we investigate the type and degree of catalyst degradation achieved by cycling in an aqueous cell compared to a PEMFC MEA. While significant degradation is observed in IL-STEM experiments performed on a traditional Pt catalyst using the standard accelerated stress test potential window (0.6-0.95 VRHE), degradation of a PtCo catalyst designed for heavy-duty vehicle use is very limited compared to that observed in MEAs. We therefore explore various experimental parameters such as temperature, acid type, acid concentration, ionomer content, and potential window to identify conditions that reproduce the degradation observed in MEAs. We find that by extending the cycling potential window to 0.4-1.0 VRHE in an electrolyte containing Pt ions, the degraded particle size distribution and alloy composition better match that observed in MEAs. In particular, these conditions increase the relative contribution of Ostwald ripening, which appears to play a more significant role in the degradation of larger alloy particles supported on high-surface-area carbons than coalescence. Results from this work highlight the potential for discrepancies between ex situ aqueous experiments and MEA tests. While different catalysts may require a unique modification to the AST protocol, strategies provided in this work enable future in situ and identical-location experiments that will play an important role in the development of robust catalysts for heavy-duty vehicle applications.

10.
ACS Appl Mater Interfaces ; 13(31): 37004-37013, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323080

RESUMO

Rational design of catalyst layers in a membrane electrode assembly (MEA) is crucial for achieving high-performance polymer electrolyte membrane fuel cells. Establishing a clear understanding of the property (catalyst ink)-structure (catalyst layer)-performance (MEA) relationship lays the foundation for this rational design. In this work, a synergistic approach was taken to correlate the ink formulation, the microstructure of catalyst layers, and the resulting MEA performance to establish such a property-structure-performance relationship. The solvent composition (n-PA/H2O mixtures) demonstrated a strong influence on the performance of the MEA fabricated with an 830-EW (Aquivion) ionomer, especially polarization losses of cell activation and mass transport. The performance differences were studied in terms of how the solvent composition affects the catalyst/ionomer interface, ionomer network, and pore structure of the resulting catalyst layers. The ionomer aggregates mainly covered the surface of catalyst aggregates acting as oxygen reduction reaction active sites, and the aggregate sizes of the ionomer and catalyst (revealed by ultrasmall angle X-ray scattering and cryo-transmission electron microscopy) were dictated by tuning the solvent composition, which in turn determined the catalyst/ionomer interface (available active sites). In n-PA/H2O mixtures with 50∼90 wt % H2O, the catalyst agglomerates could be effectively broken up into small aggregates, leading to enhanced kinetic activities. The boiling point of the mixed solvents determined the pore structure of ultimate catalyst layers, as evidenced by mercury porosimetry and scanning electron microscopy. For mixed solvents with a higher boiling point, the catalyst-ionomer aggregates in the ink tend to agglomerate during the solvent evaporation process and finally form larger catalyst-ionomer aggregates in the ultimate catalyst layer, resulting in more secondary pores and thus lower mass transport resistance. Both the enlarged catalyst/ionomer interface and appropriate pore structure were achieved with the catalyst layer fabricated from an n-PA/H2O mixture with 90 wt % H2O, leading to the best MEA performance.

11.
Adv Mater ; 33(48): e2106371, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605065

RESUMO

Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt-Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre-doping of CoN4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt3 Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L12 -ordered Pt3 Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt3 Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading (<6 wt%), the formation of single Pt sites in the form of PtC3 N is thermodynamically favorable, in which a synergy between the PtC3 N and the CoN4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa