RESUMO
Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur compounds with important roles in stress tolerance, chemotaxis, global carbon and sulfur cycling, and climate-active gas production. Diverse marine prokaryotes and eukaryotes produce DMSP via three known pathways (methylation, transamination, and decarboxylation) and metabolize DMSP via three further pathways (demethylation, cleavage, and oxidation). Over 20 key enzymes from these pathways have been identified to inform on the biodiversity and importance of DMSP cycling. The last dozen years have seen significant changes in our understanding of the enzymology and molecular mechanisms of these DMSP cycling enzymes through the application of biochemistry and structural biology. This has yielded more than 10 crystal structures and, in many cases, detailed explanations as to how and why organisms synthesis and metabolize DMSP. In this review, we describe recent progress in biochemical and mechanistic understandings of DMSP synthesis and metabolism, highlighting the important knowledge gleaned and current challenges that warrant further exploration.
RESUMO
Cryptophyte plastids originated from a red algal ancestor through secondary endosymbiosis. Cryptophyte photosystem I (PSI) associates with transmembrane alloxanthin-chlorophyll a/c proteins (ACPIs) as light-harvesting complexes (LHCs). Here, we report the structure of the photosynthetic PSI-ACPI supercomplex from the cryptophyte Chroomonas placoidea at 2.7-Å resolution obtained by crygenic electron microscopy. Cryptophyte PSI-ACPI represents a unique PSI-LHCI intermediate in the evolution from red algal to diatom PSI-LHCI. The PSI-ACPI supercomplex is composed of a monomeric PSI core containing 14 subunits, 12 of which originated in red algae, 1 diatom PsaR homolog, and an additional peptide. The PSI core is surrounded by 14 ACPI subunits that form 2 antenna layers: an inner layer with 11 ACPIs surrounding the PSI core and an outer layer containing 3 ACPIs. A pigment-binding subunit that is not present in any other previously characterized PSI-LHCI complexes, ACPI-S, mediates the association and energy transfer between the outer and inner ACPIs. The extensive pigment network of PSI-ACPI ensures efficient light harvesting, energy transfer, and dissipation. Overall, the PSI-LHCI structure identified in this study provides a framework for delineating the mechanisms of energy transfer in cryptophyte PSI-LHCI and for understanding the evolution of photosynthesis in the red lineage, which occurred via secondary endosymbiosis.
Assuntos
Diatomáceas , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila A/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese , Transferência de Energia , Diatomáceas/metabolismoRESUMO
The carboxysome is a natural proteinaceous organelle for carbon fixation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble to form a polyhedral shell structure to sequester cargo enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), and carbonic anhydrases. How these protein components assemble to construct a functional carboxysome is a central question in not only understanding carboxysome structure and function but also synthetic engineering of carboxysomes for biotechnological applications. Here, we determined the structure of the chaperone protein CcmS, which has recently been identified to be involved in ß-carboxysome assembly, and its interactions with ß-carboxysome proteins. The crystal structure at 1.99â Å resolution reveals CcmS from Nostoc sp. PCC 7120 forms a homodimer, and each CcmS monomer consists of five α-helices and four ß-sheets. Biochemical assays indicate that CcmS specifically interacts with the C-terminal extension of the carboxysome shell protein CcmK1, but not the shell protein homolog CcmK2 or the carboxysome scaffolding protein CcmM. Moreover, we solved the structure of a stable complex of CcmS and the C-terminus of CcmK1 at 1.67â Å resolution and unveiled how the CcmS dimer interacts with the C-terminus of CcmK1. These findings allowed us to propose a model to illustrate CcmS-mediated ß-carboxysome assembly by interacting with CcmK1 at the outer shell surface. Collectively, our study provides detailed insights into the accessory factors that drive and regulate carboxysome assembly, thereby improving our knowledge of carboxysome structure, function, and bioengineering.
Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Nostoc/metabolismo , Nostoc/genética , Cristalografia por Raios X , Organelas/metabolismo , Modelos MolecularesRESUMO
Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.
Assuntos
Prochlorococcus , Água do Mar , Transportadores de Cassetes de Ligação de ATP/metabolismo , Prochlorococcus/metabolismo , Ureia/metabolismo , Água do Mar/microbiologiaRESUMO
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.
Assuntos
Liases de Carbono-Enxofre , Compostos de Sulfônio , Sequência de Aminoácidos , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Oceanos e Mares , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismoRESUMO
Efficient solar energy conversion is ensured by the organization, physical association, and physiological coordination of various protein complexes in photosynthetic membranes. Here, we visualize the native architecture and interactions of photosynthetic complexes within the thylakoid membranes from a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) using high-resolution atomic force microscopy. In the Syn2973 thylakoid membranes, both photosystem I (PSI)-enriched domains and crystalline photosystem II (PSII) dimer arrays were observed, providing favorable membrane environments for photosynthetic electron transport. The high light (HL)-adapted thylakoid membranes accommodated a large amount of PSI complexes, without the incorporation of iron-stress-induced protein A (IsiA) assemblies and formation of IsiA-PSI supercomplexes. In the iron deficiency (Fe-)-treated thylakoid membranes, in contrast, IsiA proteins densely associated with PSI, forming the IsiA-PSI supercomplexes with varying assembly structures. Moreover, type-I NADH dehydrogenase-like complexes (NDH-1) were upregulated under the HL and Fe- conditions and established close association with PSI complexes to facilitate cyclic electron transport. Our study provides insight into the structural heterogeneity and plasticity of the photosynthetic apparatus in the context of their native membranes in Syn2973 under environmental stress. Advanced understanding of the photosynthetic membrane organization and adaptation will provide a framework for uncovering the molecular mechanisms of efficient light harvesting and energy conversion.
Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , AclimataçãoRESUMO
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.
Assuntos
Acetilesterase/química , Acetilesterase/metabolismo , Adaptação Fisiológica , Temperatura Baixa , Acetilesterase/antagonistas & inibidores , Acetilesterase/genética , Sequência de Aminoácidos , Bactérias/enzimologia , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Cinética , Metais/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Filogenia , Multimerização Proteica , Especificidade por Substrato/efeitos dos fármacos , TemperaturaRESUMO
Monomethylamine (MMA) is an important climate-active oceanic trace gas and ubiquitous in the oceans. γ-Glutamylmethylamide synthetase (GmaS) catalyzes the conversion of MMA to γ-glutamylmethylamide, the first step in MMA metabolism in many marine bacteria. The gmaS gene occurs in â¼23% of microbial genomes in the surface ocean and is a validated biomarker to detect MMA-utilizing bacteria. However, the catalytic mechanism of GmaS has not been studied because of the lack of structural information. Here, the GmaS from Rhodovulum sp. 12E13 (RhGmaS) was characterized, and the crystal structures of apo-RhGmaS and RhGmaS with different ligands in five states were solved. Based on structural and biochemical analyses, the catalytic mechanism of RhGmaS was explained. ATP is first bound in RhGmaS, leading to a conformational change of a flexible loop (Lys287-Ile305), which is essential for the subsequent binding of glutamate. During the catalysis of RhGmaS, the residue Arg312 participates in polarizing the γ-phosphate of ATP and in stabilizing the γ-glutamyl phosphate intermediate; Asp177 is responsible for the deprotonation of MMA, assisting the attack of MMA on γ-glutamyl phosphate to produce a tetrahedral intermediate; and Glu186 acts as a catalytic base to abstract a proton from the tetrahedral intermediate to finally generate glutamylmethylamide. Sequence analysis suggested that the catalytic mechanism of RhGmaS proposed in this study has universal significance in bacteria containing GmaS. Our results provide novel insights into MMA metabolism, contributing to a better understanding of MMA catabolism in global carbon and nitrogen cycles.
Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Magnésio/metabolismo , Metilaminas/metabolismo , Microscopia Eletrônica , Rhodovulum/metabolismoRESUMO
Dimethylsulfoniopropionate (DMSP) is one of the most abundant organic sulfur compounds in the oceans, which is mainly degraded by bacteria through two pathways, a cleavage pathway and a demethylation pathway. Its volatile catabolites dimethyl sulfide (DMS) and methanethiol (MT) in these pathways play important roles in the global sulfur cycle and have potential influences on the global climate. Intense DMS/DMSP cycling occurs in the Arctic. However, little is known about the diversity of cultivable DMSP-catabolizing bacteria in the Arctic and how they catabolize DMSP. Here, we screened DMSP-catabolizing bacteria from Arctic samples and found that bacteria of four genera (Psychrobacter, Pseudoalteromonas, Alteromonas, and Vibrio) could grow with DMSP as the sole carbon source, among which Psychrobacter and Pseudoalteromonas are predominant. Four representative strains (Psychrobacter sp. K31L, Pseudoalteromonas sp. K222D, Alteromonas sp. K632G, and Vibrio sp. G41H) from different genera were selected to probe their DMSP catabolic pathways. All these strains produce DMS and MT simultaneously during their growth on DMSP, indicating that all strains likely possess the two DMSP catabolic pathways. On the basis of genomic and biochemical analyses, the DMSP catabolic pathways in these strains were proposed. Bioinformatic analysis indicated that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. This study provides novel insights into DMSP catabolism in marine bacteria. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in the oceans. The catabolism of DMSP is an important step of the global sulfur cycle. Although Gammaproteobacteria are widespread in the oceans, the contribution of Gammaproteobacteria in global DMSP catabolism is not fully understood. Here, we found that bacteria of four genera belonging to Gammaproteobacteria (Psychrobacter, Pseudoalteromonas, Alteromonas and Vibrio), which were isolated from Arctic samples, were able to grow on DMSP. The DMSP catabolic pathways of representative strains were proposed. Bioinformatic analysis indicates that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. Our results suggest that novel DMSP dethiomethylases/demethylases may exist in Pseudoalteromonas, Alteromonas, and Vibrio and that Gammaproteobacteria may be important participants in the marine environment, especially in polar DMSP cycling.
Assuntos
Compostos de Sulfônio , Bactérias , Liases de Carbono-Enxofre/genética , Humanos , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Enxofre/metabolismoRESUMO
Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.
Assuntos
Colágeno Tipo I , Vibrio , Sequência de Aminoácidos , Aminoácidos , Animais , Colágeno/metabolismo , Colágeno Tipo I/genética , Colagenases/genética , Colagenases/metabolismo , Mamíferos , Peptídeos/metabolismo , Tropocolágeno , Vibrio/metabolismoRESUMO
As the most abundant d-amino acid (DAA) in the ocean, d-alanine (d-Ala) is a key component of peptidoglycan in the bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of d-Ala through the microbial food web remain largely unknown. In this study, the metabolism of d-Ala by marine bacterium Pseudoalteromonas sp. strain CF6-2 was investigated. Based on genomic, transcriptional, and biochemical analyses combined with gene knockout, d-Ala aminotransferase was found to be indispensable for the catabolism of d-Ala in strain CF6-2. Investigation on other marine bacteria also showed that d-Ala aminotransferase gene is a reliable indicator for their ability to utilize d-Ala. Bioinformatic investigation revealed that d-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and Gammaproteobacteria represents the predominant group containing d-Ala aminotransferase. Thus, Gammaproteobacteria is likely the dominant group to utilize d-Ala via d-Ala aminotransferase to drive the recycling and mineralization of d-Ala in the ocean. IMPORTANCE As the most abundant d-amino acid in the ocean, d-Ala is a component of the marine DON (dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of d-Ala to drive the recycling and mineralization of d-Ala in the ocean is still largely unknown. The results in this study showed that d-Ala aminotransferase is specific and indispensable for d-Ala catabolism in marine bacteria and that marine bacteria containing d-Ala aminotransferase genes are predominantly Gammaproteobacteria widely distributed in global oceans. This study reveals marine d-Ala-utilizing bacteria and the mechanism of their metabolization of d-Ala. The results shed light on the mechanisms of recycling and mineralization of d-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.
Assuntos
Pseudoalteromonas , Alanina/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Água do Mar/microbiologia , Transaminases/genéticaRESUMO
Two novel Gram-stain-negative, facultative anaerobic, non-flagellated, rod-shaped bacterial strains, designated MT13T and MT32, were isolated from sediment samples collected from the Mariana Trench at a depth of 8300 m. The two strains grew at -2-30 °C (optimum, 25 °C), at pH 5.5-10.0 (optimum, pH 7.5-8.0) and with 0-15â% (w/v) NaCl (optimum, 3-6â%). They did not reduce nitrate to nitrite nor hydrolyse Tweens 40 and 80, aesculin, casein, starch and DNA. The genomic G+C contents of draft genomes of strain MT13T and MT32 were 52.2 and 54.1 mâol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains MT13T and MT32 were affiliated with the genus Halomonas, with the highest similarity to the type strain of Halomonas olivaria. The values of average nucleotide identity and in silico DNA-DNA hybridization between strain MT13T and MT32, and between strain MT13T and five closely related type strains of Halomonas species indicated that strains MT13T and MT32 belonged to the same species, but represented a novel species in the genus of Halomonas. The major cellular fatty acids of strains MT13T and MT32 were C16â:â0, summed feature 3(C16â:â1 ω7c/ω6c) and summed feature 8 (C18â:â1 ω7c/ω6c). Major polar lipids of strains MT13T and MT32 included phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Ubiquinone-9 was the predominant respiratory quinone. Based on data from the present polyphasic study, strains MT13T and MT32 represent a novel species of the genus Halomonas, for which the name Halomonas profundi sp. nov. is proposed. The type strain is MT13T (=MCCC 1K06389T=KCTC 82923T).
Assuntos
Sedimentos Geológicos/microbiologia , Halomonas , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Halomonas/classificação , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
A Gram-stain-negative, aerobic, flagellated and rod-shaped bacterium, designated strain SM2107T, was isolated from a deep-sea sediment sample collected from the Southwest Indian Ocean. Strain SM2107T grew at 4-40 °C and with 0-10.0â% (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed casein, gelatin, chitin and DNA. The phylogenetic trees based on the 16S rRNA genes and single-copy orthologous clusters showed that strain SM2107T, together with Rheinheimera tuosuensis, Rheinheimera perlucida and Arsukibacterium ikkense, formed a separate clade, having the highest similarity to the type strain of Rheinheimera tuosuensis (98.3%). The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol and the major cellular fatty acids were summed feature 8 (C18â:â1 ω7c and/or C18â:â1 ω6c), C16â:â0, C17â:â1 ω8Ñ and summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c). The only respiratory quinone was Q-8. The genomic DNA G+C content of strain SM2107T was 48.8â%. The digital DNA-DNA hybridization values between strain SM2107T and type strains of Rheinheimera tuosuensis, Rheinheimera perlucida and Arsukibacterium ikkense were 41.16, 37.70 and 31.80â%, while the average amino acid identity values between them were 87.59, 86.76 and 83.64â%, respectively. Based on the polyphasic evidence presented in this study, strain SM2107T was considered to represent a novel species within the genus Arsukibacterium, for which the name Arsukibacterium indicum was proposed. The type strain is SM2107T (=MCCC M24986T=KCTC 82921T). Moreover, the transfer of Rheinheimera tuosuensis and Rheinheimera perlucida to the genus Arsukibacterium as Arsukibacterium tuosuense comb. nov. (type strain TS-T4T=CGMCC 1.12461T=JCM 19264T) and Arsukibacterium perlucidum comb. nov. (type strain BA131T=LMG 23581T=CIP 109200T) is also proposed.
Assuntos
Ácidos Graxos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , Chromatiaceae , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
Alginate lyases play important roles in alginate degradation in the ocean. Although a large number of alginate lyases have been characterized, little is yet known about those in extremely cold polar environments, which may have unique mechanisms for environmental adaptation and for alginate degradation. Here, we report the characterization of a novel PL7 alginate lyase AlyC3 from Psychromonas sp. C-3 isolated from the Arctic brown alga Laminaria, including its phylogenetic classification, catalytic properties, and structure. We propose the establishment of a new PM-specific subfamily of PL7 (subfamily 6) represented by AlyC3 based on phylogenetic analysis and enzymatic properties. Structural and biochemical analyses showed that AlyC3 is a dimer, representing the first dimeric endo-alginate lyase structure. AlyC3 is activated by NaCl and adopts a novel salt-activated mechanism; that is, salinity adjusts the enzymatic activity by affecting its aggregation states. We further solved the structure of an inactive mutant H127A/Y244A in complex with a dimannuronate molecule and proposed the catalytic process of AlyC3 based on structural and biochemical analyses. We show that Arg82 and Tyr190 at the two ends of the catalytic canyon help the positioning of the repeated units of the substrate and that His127, Tyr244, Arg78, and Gln125 mediate the catalytic reaction. Our study uncovers, for the first time, the amino acid residues for alginate positioning in an alginate lyase and demonstrates that such residues involved in alginate positioning are conserved in other alginate lyases. This study provides a better understanding of the mechanisms of alginate degradation by alginate lyases.
Assuntos
Proteínas de Bactérias/química , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases/química , Multimerização Proteica , Proteínas de Bactérias/genética , Catálise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Laminaria/microbiologia , Polissacarídeo-Liases/genética , Domínios Proteicos , Relação Estrutura-AtividadeRESUMO
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor without curable therapy. Surgical resection remains the first choice of patients with GBM but tumors relapse rapidly even combined with conventional chemoradiotherapy. The mechanism of GBM rapid recurrence is poorly understood, which is largely due to the lack of an appropriate animal model, thus heavily impedes the improvement of postoperative therapy. Here we established a highly reproducible mouse GBM surgical model by using the syngeneic G422TN-GBM cells, which faithfully recapitulates the features of rapid recurrence of human GBM after surgery. Implanting 2 × 103-5 × 104 of G422TN-GBM cells in mouse cerebral cortex caused death in all animal within 23 days, while surgery was an effective therapy but not curable. After complete removal of visible tumors on day 5-9 of tumor growth, the tumors recurred macroscopically within 5 days accompanied by increasing infiltrative cancer foci. Mechanistically, the rapid recurrence of resected tumors was positively correlated to early Akt activation, which subsequently upregulated PD-L1/Vimentin and promoted proliferation/migration of cancer cells. In addition, environmental astrocytic activation with strong PD-L1 signal was prominent. Taken together, we provided a novel GBM surgical recurrence model for preclinical studies and suggested complicated recurring mechanisms involving in strong oncogenic signaling as well as immune inhibitory signals from both GBM cells and their neighboring astrocytes.
Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vimentina/metabolismo , Animais , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Glioblastoma/cirurgia , Glioblastoma/terapia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Recidiva Local de NeoplasiaRESUMO
Ulvan is an important marine polysaccharide. Bacterial ulvan lyases play important roles in ulvan degradation and marine carbon cycling. Until now, only a small number of ulvan lyases have been characterized. Here, a new ulvan lyase, Uly1, belonging to polysaccharide lyase family 24 (PL24) from the marine bacterium Catenovulum maritimum, is characterized. The optimal temperature and pH for Uly1 to degrade ulvan are 40°C and pH 9.0, respectively. Uly1 degrades ulvan polysaccharides in the endolytic manner, mainly producing ΔRha3S, consisting of an unsaturated 4-deoxy-l-threo-hex-4-enopyranosiduronic acid and a 3-O-sulfated α-l-rhamnose. The structure of Uly1 was resolved at a 2.10-Å resolution. Uly1 adopts a seven-bladed ß-propeller architecture. Structural and site-directed mutagenesis analyses indicate that four highly conserved residues, H128, H149, Y223, and R239, are essential for catalysis. H128 functions as both the catalytic acid and base, H149 and R239 function as the neutralizers, and Y223 plays a supporting role in catalysis. Structural comparison and sequence alignment suggest that Uly1 and many other PL24 enzymes may directly bind the substrate near the catalytic residues for catalysis, different from the PL24 ulvan lyase LOR_107, which adopts a two-stage substrate binding process. This study provides new insights into ulvan lyases and ulvan degradation. IMPORTANCE Ulvan is a major cell wall component of green algae of the genus Ulva. Many marine heterotrophic bacteria can produce extracellular ulvan lyases to degrade ulvan for a carbon nutrient. In addition, ulvan has a range of physiological bioactivities based on its specific chemical structure. Ulvan lyase thus plays an important role in marine carbon cycling and has great potential in biotechnological applications. However, only a small number of ulvan lyases have been characterized over the past 10 years. Here, based on biochemical and structural analyses, a new ulvan lyase of polysaccharide lyase family 24 is characterized, and its substrate recognition and catalytic mechanisms are revealed. Moreover, a new substrate binding process adopted by PL24 ulvan lyases is proposed. This study offers a better understanding of bacterial ulvan lyases and is helpful for studying the application potentials of ulvan lyases.
Assuntos
Alteromonadaceae/enzimologia , Polissacarídeo-Liases/química , Sequência de Aminoácidos , Catálise , Filogenia , Polissacarídeo-Liases/genética , Polissacarídeos/química , Especificidade por SubstratoRESUMO
Bacterial polar flagella, comprised of flagellin, are essential for bacterial motility. Pseudoalteromonas sp. strain SM9913 is a bacterium isolated from deep-sea sediments. Unlike other Pseudoalteromonas strains that have a long polar flagellum, strain SM9913 has an abnormally short polar flagellum. Here, we investigated the underlying reason for the short flagellum and found that a single-base mutation was responsible for the altered flagellar assembly. This mutation leads to the fragmentation of the flagellin gene into two genes, PSM_A2281, encoding the core segment and the C-terminal segment, and PSM_A2282, encoding the N-terminal segment, and only gene PSM_A2281 is involved in the production of the short polar flagellum. When a chimeric gene of PSM_A2281 and PSM_A2282 encoding an intact flagellin, A2281::82, was expressed, a long polar flagellum was produced, indicating that the N-terminal segment of flagellin contributes to the production of a polar flagellum of a normal length. Analyses of the simulated structures of A2281 and A2281::82 and that of the flagellar filament assembled with A2281::82 indicate that due to the lack of two α-helices, the core of the flagellar filament assembled with A2281 is incomplete and is likely too weak to support the stability and movement of a long flagellum. This mutation in strain SM9913 had little effect on its growth and only a small effect on its swimming motility, implying that strain SM9913 can live well with this mutation in natural sedimentary environments. This study provides a better understanding of the assembly and production of bacterial flagella. IMPORTANCE Polar flagella, which are essential organelles for bacterial motility, are comprised of multiple flagellin subunits. A flagellin molecule contains an N-terminal segment, a core segment, and a C-terminal segment. The results of this investigation of the deep-sea sedimentary bacterium Pseudoalteromonas sp. strain SM9913 demonstrate that a single-base mutation in the flagellin gene leads to the production of an incomplete flagellin without the N-terminal segment and that the loss of the N-terminal segment of the flagellin protein results in the production of a shortened polar flagellar filament. Our results shed light on the important function of the N-terminal segment of flagellin in the assembly and stability of bacterial flagellar filament.
Assuntos
Flagelina , Pseudoalteromonas , Flagelos/genética , Flagelina/genética , Sedimentos Geológicos/microbiologia , Mutação , Pseudoalteromonas/genética , Água do Mar/microbiologiaRESUMO
A novel Gram-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative bacterium, designated strain SM1970T, was isolated from a seawater sample collected from the Mariana Trench. Strain SM1970T grew at 15-37 oC and with 1-5% (w/v) NaCl. It hydrolyzed colloidal chitin, agar and casein but did not reduce nitrate to nitrite. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1970T formed a distinct lineage close to the genus Catenovulum within the family Alteromonadaceae, sharing the highest sequence similarity (93.6%) with type strain of Catenovulum maritimum but < 93.0% sequence similarity with those of other known species in the class Gammaproteobacteria. The major fatty acids of strain SM1970T were summed feature 3 (C16:â1 ω7c and/or C16:â1 ω6c), C16:â0 and summed feature 8 (C18:â1 ω7c and/or C18:â1 ω6c). The major polar lipids of the strain included phosphatidylethanolamine and phosphatidylglycerol and its main respiratory quinone was ubiquinone 8. The draft genome of strain SM1970T consisted of 77 scaffolds and was 4,172,146 bp in length, containing a complete set of genes for chitin degradation. The average amino acid identity (AAI) values between SM1970T and type strains of known Catenovulum species were 56.6-57.1% while the percentage of conserved proteins (POCP) values between them were 28.5-31.5%. The genomic DNA G + C content of strain SM1970T was 40.1 mol%. On the basis of the polyphasic analysis, strain SM1970T is considered to represent a novel species in a novel genus of the family Alteromonadaceae, for which the name Marinifaba aquimaris is proposed with the type strain being SM1970T (= MCCC 1K04323T = KCTC 72844T).
Assuntos
Alteromonadaceae , Quitina , Alteromonadaceae/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNARESUMO
The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.
Assuntos
Proteínas de Bactérias/metabolismo , Desmetilação , Propionatos/metabolismo , Roseobacter/enzimologia , Compostos de Sulfônio/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Cinética , Oceanos e Mares , Oxirredutases/metabolismo , Roseobacter/genética , Enxofre/metabolismoRESUMO
A Gram-stain-negative, aerobic, non-flagellated and rod- or ovoid-shaped bacterium, designated as strain S4J41T, was isolated from Antarctic intertidal sediment. The isolate grew at 0-37 °C and with 0.5-10â% (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed Tween 80 and gelatin. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S4J41T constituted a distinct phylogenetic line within the family Rhodobacteraceae and was closely related with some species in the genera Ruegeria, Phaeobacter, Pseudopuniceibacterium, Sulfitobacter, Puniceibacterium and Poseidonocella with 98.6-95.7â% 16S rRNA gene sequence similarities. The major cellular fatty acids were C16â:â0, summed feature 8 (C18â:â1 ω7c and/or C18â:â1 ω6c) and C18â:â0 and the major polar lipids were phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid. The sole respiratory quinone was Q-10. The genomic DNA G+C content of strain S4J41T was 60.3 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained in this study, strain S4J41T is considered to represent a novel species in a new genus within the family Rhodobacteraceae, for which the name Antarcticimicrobium sediminis gen. nov., sp. nov. is proposed. The type strain is S4J41T (=MCCC 1K03508T=KCTC 62793T). Moreover, the transfer of Ruegeria lutea Kim et al. 2019 to Antarcticimicrobium gen. nov. as Antarcticimicrobium luteum comb. nov. (type strain 318-1T=JCM 30927T=KCTC 72105T) is also proposed.