Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3372-3375, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875623

RESUMO

We propose a hybrid fiber-based time synchronization and vibration detection system. The vibration is detected by exploring the idle light of the time synchronization system, i.e., the Rayleigh backscattering of the timing pulse disseminated in the fiber link. The addition of a sensing function does not affect the performance of time synchronization. In the multiuser experimental demonstration, time deviation results are 3.6 ps at τ = 1 s and 1.4 ps at τ = 104 s on the 40-km fiber link. Meanwhile, the hybrid system can accurately detect and locate vibrations occurring on the link. This method enables multiple functions of the optical fiber network without occupying extra optical channels. Moreover, it gives a possible solution for enhancing the security of the time synchronization network through vibration detection.

2.
Neurochem Res ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935224

RESUMO

A ketogenic diet (KD) is a high-fat, low-carbohydrate, and low-protein diet that exerts antiepileptic effects by attenuating spontaneous recurrent seizures, ameliorating learning and memory impairments, and modulating the gut microbiota composition. However, the role of the gut microbiome in the antiepileptic effects of a KD on temporal lobe epilepsy (TLE) induced by lithium-pilocarpine in adult rats is still unknown. Our study provides evidence demonstrating that a KD effectively mitigates seizure behavior and reduces acute-phase epileptic brain activity and that KD treatment alleviates hippocampal neuronal damage and improves cognitive impairment induced by TLE. We also observed that the beneficial effects of a KD are compromised when the gut microbiota is disrupted through antibiotic administration. Analysis of gut microbiota components via 16S rRNA gene sequencing in fecal samples collected from TLE rats fed either a KD or a normal diet. The Chao1 and ACE indices showed decreased species variety in KD-fed rats compared to TLE rats fed a normal diet. A KD increased the levels of Actinobacteriota, Verrucomicrobiota and Proteobacteria and decreased the level of Bacteroidetes. Interestingly, the abundances of Actinobacteriota and Verrucomicrobiota were positively correlated with learning and memory ability, and the abundance of Proteobacteria was positively correlated with seizure susceptibility. In conclusion, our study revealed the significant antiepileptic and neuroprotective effects of a KD on pilocarpine-induced epilepsy in rats, primarily mediated through the modulation of the gut microbiota. However, whether the gut microbiota mediates the antiseizure effects of a KD still needs to be better elucidated.

3.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643083

RESUMO

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Assuntos
Chifres de Veado , Proteínas de Homeodomínio , MicroRNAs , Animais , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Cell Mol Neurobiol ; 43(3): 991-1003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35678887

RESUMO

The brain has many connections with various organs. Recent advances have demonstrated the existence of a bidirectional central nervous system (CNS) and intestinal tract, that is, the brain-gut axis. Although studies have suggested that the brain and lung can communicate with each other through many pathways, whether there is a brain-lung axis remains still unknown. Based on previous findings, we put forward a hypothesis: there is a cross-talk between the central nervous system and the lung via neuroanatomical pathway, endocrine pathway, immune pathway, metabolites and microorganism pathway, gas pathway, that is, the brain-lung axis. Beyond the regulation of the physiological state in the body, bi-directional communication between the lung and the brain is associated with a variety of disease states, including lung diseases and CNS diseases. Exploring the brain-lung axis not only helps us to understand the development of the disease from different aspects, but also provides an important target for treatment strategies.


Assuntos
Encéfalo , Doenças do Sistema Nervoso Central , Humanos , Encéfalo/metabolismo , Sistema Nervoso Central , Intestinos , Doenças do Sistema Nervoso Central/metabolismo , Pulmão
5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917000

RESUMO

Two novel plant growth-promoting, rod-shaped, Gram-positive and non-motile rhizobacteria, W1NT and W2RT, were isolated from wetland plants Festuca elata and Nymphoides peltatum, respectively, in China. The results of the 16S rRNA sequence alignment analysis showed that they were related to Microbacterium, with the highest similarity to Microbacterium ketosireducens (98.7 %) and Microbacterium laevaniformans (98.5 %) for strain W1NT, and to Microbacterium terricola (98.1 %) and Microbacterium marinum (98.0 %) for strain W2RT. Phylogenetic analyses based on 16S rRNA gene sequences and 92 conserved concatenated proteins suggested that the two strains belong to the genus Microbacterium and were placed in two separate novel phylogenetic clades. The genome sizes of the two strains were 3.2 and 3.7 Mb, and the G+C contents were 71.7 and 68.5 mol%, respectively. The comparative genome results showed that the average nucleotide identity values between W1NT and W2RT and other species ranged from 73.5 to 83.6 %, and the digital DNA-DNA hybridization values ranged from 19.7 to 26.8 %. These two strains show physiological and biochemical features that differ from those of closely related species. Rhamnose, galactose and glucose were present in the characteristic sugar fractions of strains W1NT and W2RT. The peptidoglycan of strains W1NT and W2RT contained the amino acids ornithine, alanine and aspartic acid. C15 : 0 anteiso, C17 : 0 anteiso and C16 : 0 iso were the predominant cellular fatty acids in W1NT and W2RT. Phosphatidylglycerol and diphosphatidylglycerol are major polar lipid components. Strain W1NT not only formed bacterial biofilms but also had the ability to solubilize phosphorus and produce indole-3-acetic acid. Strain W2RT had siderophore-producing and lignin-degrading properties. Based on their genetic and phenotypic characteristics, strains W1NT and W2RT were classified as novel bacteria in the genus Microbacterium and designated as Microbacterium festucae sp. nov. (type strain W1NT=ACCC 61807T=GDMCC 1.2966T=JCM 35339T) and Microbacterium nymphoidis sp. nov. (type strain W2RT=ACCC 61808T=GDMCC 1.2967T=JCM 35340T).


Assuntos
Actinomycetales , Ácidos Graxos , Composição de Bases , Ácidos Graxos/química , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , China , Actinomycetales/genética
6.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687005

RESUMO

Two new compounds named 4,4'-bis(ß-D-glucopyranosyloxy)biphenyl (1) and spirostane-25(27)-en-2α,3ß-diol-3-O-ß-D-xylopyranosyl(1→3)-ß-D-glucopyranosyl(1→4)-ß-D-galactopyranoside (2) were isolated from n-butanol extraction part of 80% ethanol extract of Allii Macrostemonis Bulbus. Alongside these, ten known compounds (3-12) were also identified, including a flavonoid glycoside (3), seven steroids (4-10), a nucleoside (11), and a phenylpropanoid glycoside (12) were found. Notably, compounds 3-6 were isolated from this plant for the first time. The structures of all compounds were confirmed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1D, and 2D NMR spectroscopy. Some of these compounds showed strong antioxidant activity, and compound 1 demonstrated the most potent reduction of ferric ions (Fe3+) with an IC50 value of 0.59 ± 0.18 mg/mL. Compounds 2 and 3 exhibited the highest scavenging activity against superoxide anion radicals (O2-·) with an IC50 value of 0.02 ± 0.01 mg/mL. Additionally, compound 3 displayed substantial scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with IC50 values of 0.21 ± 0.17 mg/mL and 0.02 ± 0.01 mg/mL, respectively. The discovery of these two new compounds is a reference for identifying Allii Macrostemonis Bulbus quality markers. Moreover, their exceptional antioxidant activity offers a promising avenue for uncovering novel natural antioxidants.


Assuntos
1-Butanol , Antioxidantes , Antioxidantes/farmacologia , Nucleosídeos
7.
Genet Med ; 24(11): 2274-2284, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029299

RESUMO

PURPOSE: The genetic causes of oocyte maturation arrest leading to female infertility are largely unknown, and no population-based genetic analysis has been applied in cohorts of patients with infertility. We aimed to identify novel pathogenic genes causing oocyte maturation arrest by using a gene-based burden test. METHODS: Through comparison of exome sequencing data from 716 females with infertility characterized by oocyte maturation arrest and 3539 controls, we performed a gene-based burden test and identified a novel pathogenic gene LHX8. Splicing event was evaluated using a minigene assay, expression of LHX8 protein was assessed in HeLa cells, and nuclear subcellular localization was determined in both HeLa cells and mouse oocytes. RESULTS: A total of 5 heterozygous loss-of-function LHX8 variants were identified from 6 independent families (c.389+1G>T, c.412C>T [p.Arg138∗], c.282C>A [p.Cys94∗]; c.257dup [p.Tyr86∗]; and c.180del, [p.Ser61Profs∗30]). All the identified variants in LHX8 produced truncated LHX8 protein and resulted in loss of LHX8 nuclear localization in both HeLa cells and mouse oocytes. CONCLUSION: By combining genetic evidence and functional evaluations, we identified a novel pathogenic gene LHX8 and established the causative relationship between LHX8 haploinsufficiency and female infertility characterized by oocyte maturation arrest.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Camundongos , Animais , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Células HeLa , Oogênese/genética , Oócitos , Sequenciamento do Exoma
8.
J Formos Med Assoc ; 121(1 Pt 2): 425-433, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34144861

RESUMO

BACKGROUND: This study was to perform an economic evaluation to understand clinical outcomes and health resource use between hip fracture patients receiving hospital-based postfracture fracture liaison service (FLS) care and those receiving usual care (UC) in Taiwan. METHODS: This cohort study included hospital-based data of 174 hip fracture patients who received FLS care (FLS group) from National Taiwan University Hospital, and 1697 propensity score-matched patients who received UC (UC group) of National Health Insurance claim-based data. Two groups had similar baseline characteristics but differed in hip fracture care after propensity score matching. Clinical outcomes included refracture-free survival (RFS), hip-refracture-free survival (HRFS), and overall survival (OS). Health resource use included inpatient, outpatient, and pharmacy costs within 2 years follow-up after the index of hip fracture. The economic evaluation of the FLS model was analyzed using the net monetary benefit regression framework based on the National Health Insurance perspective. RESULTS: The FLS group had longer RFS than the UC group, with an adjusted difference of 44.3 days (95% confidence interval: 7.2-81.4 days). Two groups did not differ in inpatient and outpatient costs during follow-up, but the FLS group had a higher expenditure than the UC group on osteoporosis-related medication. The probability of FLS being cost-effective was >80% and of increasing RFS, HRFS, and OS was 95%, 81%, and 80%, respectively, when the willingness-to-pay threshold was >USD 65/gross domestic product per day. CONCLUSION: FLS care was cost-effective in reducing refracture occurrence days for patients initially diagnosed with hip fractures.


Assuntos
Fraturas do Quadril , Estudos de Coortes , Análise Custo-Benefício , Fraturas do Quadril/terapia , Humanos , Taiwan
9.
Chem Soc Rev ; 50(7): 4359-4381, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33598671

RESUMO

In the past several decades, light alkane dehydrogenation to mono-olefins, especially propane dehydrogenation to propylene has gained widespread attention and much development in the field of research and commercial application. Under suitable conditions, the supported Pt-Sn and CrOx catalysts widely used in industry exhibit satisfactory dehydrogenation activity and selectivity. However, the high cost of Pt and the potential environmental problems of CrOx have driven researchers to improve the coking and sintering resistance of Pt catalysts, and to find new non-noble metal and environment-friendly catalysts. As for the development of the reactor, it should be noted that low operation pressure is beneficial for improving the single-pass conversion, decreasing the amount of unconverted alkane recycled back to the reactor, and reducing the energy consumption of the whole process. Therefore, the research direction of reactor improvement is towards reducing the pressure drop. This review is aimed at introducing the characteristics of the dehydrogenation reaction, the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the development of catalyst and reactor.

10.
J Cell Physiol ; 236(5): 3752-3769, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33111346

RESUMO

A growing deer antler contains a stem cell niche that can drive endochondral bone regeneration at up to 2 cm/day. Pleiotrophin (PTN), as a multifunctional growth factor, is found highly expressed at the messenger RNA level within the active antler stem cell tissues. This study aims to map the expression patterns of PTN protein and its receptors in a growing antler and investigate the effects of PTN on antler stem cells in vitro. Immunohistochemistry was employed to localise PTN/midkine (MDK) and their functional receptors, protein tyrosine phosphatase receptor type Z (PTPRZ), anaplastic lymphoma kinase (ALK), NOTCH2, and integrin αV ß3, on serial slides of the antler growth centre. PTN was found to be the dominantly expressed growth factor in the PTN/MDK family. High expression of PTPRZ and ALK co-localised with PTN was found suggesting a potential interaction. The high levels of PTN and PTPRZ reflected the antler stem cell activation status during the regenerative process. When antler stem cells were cultured in vitro under the normoxic condition, no PTN protein was detected and exogenous PTN did not induce differentiation or proliferation but rather stem cell maintenance. Collectively, the antler stem cell niche appears to upregulate PTN and PTPRZ in vivo, and PTN-PTPRZ signalling may be involved in regulating antler stem cell behaviour during rapid antler regeneration.


Assuntos
Chifres de Veado/citologia , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Cervos/anatomia & histologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Regeneração , Células-Tronco/metabolismo , Quinase do Linfoma Anaplásico/metabolismo , Animais , Proteínas de Transporte/genética , Diferenciação Celular/genética , Hipóxia Celular/genética , Proliferação de Células/genética , Citocinas/genética , Regulação da Expressão Gênica , Midkina/metabolismo , Modelos Biológicos , Osteogênese/genética , Pós , Regeneração/genética , Transdução de Sinais , Células-Tronco/citologia , Extratos de Tecidos
11.
Cell Tissue Res ; 386(1): 99-116, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390408

RESUMO

Scarification is the outcome of cutaneous wound healing under normal conditions. Although considerable effort has been expended in this field, scar-less healing has not been achieved satisfactorily. The lack of a good model of scar-free healing has contributed to this undesirable situation. However, the annual regeneration of deer antlers, which starts from regenerative wound healing over the top of the pedicles (permanent bony protuberances), may provide such a model. Therefore, in this study, we investigated the process of pedicle wound healing at the organ, tissue, cell, and molecular levels. Our results convincingly demonstrate that wounds over the pedicle preceded a regenerative healing process including regeneration of skin appendages, such as hair follicles. Compared to the scar healing in rats, regenerative healing of the pedicle wound exhibited a weaker inflammatory response, lack of myofibroblast induction, and higher ratios of Col III/Col I, TGF-ß3/TGF-ß1, and MMP/TIMP. Importantly, our periosteal transplantation experiments in vivo revealed that this regenerative healing process was achieved through induction of antler stem cells (ASCs). Further study showed that this effect of ASCs on regenerative healing was not species-specific but more generic and could be applied to other mammalian species, as injection of ASCs stimulated regenerative healing of full-thickness excisional cutaneous wounds in rats. Overall, our findings show that ASCs may have therapeutic potential in enhancing the quality of wound healing and preventing scar formation in clinical settings.


Assuntos
Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Chifres de Veado , Cervos , Masculino , Ratos , Ratos Sprague-Dawley
12.
Nanotechnology ; 32(14): 145708, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326947

RESUMO

Si δ-doped AlGaAs/InGaAs/AlGaAs quantum well (QW) structure is commonly adopted as one of the core elements in modern electric and optoelectronic devices. Here, the time dependent photoconductivity spectra along the active InGaAs QW channel in a dual and symmetric Si δ-doped AlGaAs/InGaAs/AlGaAs QW structure are systematically studied under various temperatures (T = 80-300 K) and various incident photon energies (E in = 1.10-1.88 eV) and intensities. In addition to positive photoconductivity, negative photoconductivity (NPC) was observed and attributed to two origins. For T = 180-240 K with E in = 1.51-1.61 eV, the trapping of the photo-excited electrons by the interface states located inside the conduction band of InGaAs QW layer is one of the origins for NPC curves. For T = 80-120 K with E in = 1.10-1.63 eV, the photoexcitation of the excess 'supersaturated' electrons within the active InGaAs QW caused by the short cooling process is another origin.

13.
Int J Med Sci ; 18(9): 1960-1965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850465

RESUMO

Background: Perineural injection therapy with 5% dextrose water (D5W) is a potential and innovative treatment with long-term efficacy for carpal tunnel syndrome (CTS). However, the prognostic factors of this management are lacking; hence, the aim of this retrospective study was to identify the prognostic factors of D5W perineural injection therapy for mild-to-moderate CTS. Methods: A total of 52 patients (52 wrists) diagnosed with mild-to-moderate CTS and treated with a single ultrasound-guided 5cc D5W perineural injection were retrospectively reviewed. Patient-reported injection outcomes (visual analog scale, VAS) at 6 months post-injection were categorized into two groups; (1) Good outcome, when symptom relief ≥50% compared to pre-injection and (2) Poor outcome, when symptom relief < 50% compared to pre-injection. Significant variables between groups were entered into a binary logistic regression with forward stepwise regression to determine the prognostic factors for these outcomes. Results: The treatment outcome was significantly related to body height and sensory nerve conduction velocity (SNCV) (159.1 ± 1.0 vs. 155.0 ± 1.8, p=0.04; 33.6 ± 0.8 vs. 28.3 ± 1.2, p=0.001, good vs. poor outcomes). However, only SNCV remained significantly correlated with the outcomes after conducting stepwise logistic regression (ORs: 1.201; 95% CI 1.05-1.38; p=0.01). Conclusions: SNCV was found to be a significant prognostic factor of treatment outcome for patients with mild-to-moderate CTS 6 months after a D5W perineural injection.


Assuntos
Síndrome do Túnel Carpal/tratamento farmacológico , Glucose/administração & dosagem , Nervo Mediano/efeitos dos fármacos , Dor/tratamento farmacológico , Síndrome do Túnel Carpal/complicações , Síndrome do Túnel Carpal/diagnóstico , Feminino , Seguimentos , Humanos , Injeções/métodos , Masculino , Nervo Mediano/diagnóstico por imagem , Pessoa de Meia-Idade , Dor/diagnóstico , Dor/etiologia , Medição da Dor/estatística & dados numéricos , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença , Resultado do Tratamento , Ultrassonografia de Intervenção
14.
Cell Tissue Res ; 379(1): 195-206, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31428875

RESUMO

Liver fibrosis results from collagen fiber deposition. Antler stem cells (ASCs) naturally in vivo differentiate into cartilage, which is only made of Col II in collagen component; whereas liver fibrosis is caused by over-abundance of Col I and III. In addition, ASCs can effectively promote regenerative wound healing in which tissue contains very few collagen fibers (Col I). In this study, we investigate the therapeutic effects of ASCs in a rat model of CCl4-induced liver fibrosis. Rats were treated with ASCs for 4 weeks in vivo, then biochemical and histopathological analyses were performed. Furthermore, we established cell co-culture systems of hepatic stellate cells (HSCs) and ASCs and of M1 macrophages and ASCs in vitro. Mesenchymal stem cells (MSCs) were used as a positive control. The results showed that ASC transplantation alleviated liver fibrosis effectively as evidenced by reduced collagen accumulation, decreased fatty degeneration, increased hepatocyte regeneration, decreased inflammation and significantly enhanced liver function; moreover, ASCs decreased the expression of pro-fibrogenic factors including TGF-ß and α-SMA. Additionally, our study showed that ASCs inhibit HSC activation and proliferation by controlling the expression of MMPs, TIMP1, TGF-ß, α-SMA and COL1A2 involved in these processes. Our results suggested that ASCs alleviate liver fibrosis effectively and inhibit HSC activation. Thus, ASCs may serve as a novel stem cell source for the treatment of liver fibrosis in the clinic.


Assuntos
Chifres de Veado/citologia , Cirrose Hepática/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Actinas/metabolismo , Animais , Tetracloreto de Carbono , Proliferação de Células , Técnicas de Cocultura , Colágeno/metabolismo , Cervos , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Fígado/citologia , Fígado/metabolismo , Fígado/fisiologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo
15.
FASEB J ; 33(6): 7037-7048, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30870006

RESUMO

The effective therapeutic approach of cerebral infarction is limited because of its underlying complexity. Recently, multiple long noncoding RNAs (lncRNAs) have been identified in the pathogenesis of cerebral infarction. Here, the current study aims to explore the interaction among lncRNA cyclin-dependent kinase inhibitor-2B-antisense RNA 1 (CDKN2B-AS1), transcription factor B-cell lymphoma/leukemia 11A (BCL11A), and MAPKK kinase kinase 1 (MAP4K1) and further investigate whether they affect cerebral infarction progression. The expression of CDKN2B-AS1, BCL11A, and MAP4K1 was altered in lymphocytes extracted from patients with cerebral infarction. In order to identify their roles in regulatory T (Treg) cells, the proliferation and apoptosis of the CD4+CD25+ Treg cells were examined, and levels of IL-4, IL-10, and TGF-ß were determined. Also, the RNA crosstalk among CDKN2B-AS1, BCL11A, and MAP4K1 was validated. Finally, we established a rat model of middle cerebral arterial occlusion to evaluate the neurologic impairment and cerebral infarction volume. The results revealed that lymphocytes in patients with cerebral infarction presented with the up-regulated expression of CDKN2B-AS1. Moreover, BCL11A could specifically bind to CDKN2B-AS1 and MAP4K1 promoter so as to inhibit MAP4K1. Moreover, it was observed that down-regulated CDKN2B-AS1 inhibited CD4+CD25+ Treg-cell proliferation, reduced levels of IL-4, IL-10, and TGF-ß and cerebral infarction volume, and elevated MAP4K1 expression. Collectively, our study provides evidence that CDKN2B-AS1 silencing could increase MAP4K1 expression to inhibit the CD4+CD25+ Treg-cell proliferation by reducing enrichment of transcription factor BCL11A, thereby protecting against cerebral infarction progression, highlighting a promising therapeutic strategy for treating cerebral infarction.-Lei, J.-J., Li, H.-Q., Mo, Z.-H., Liu, K.-J., Zhu, L.-J., Li, C.-Y., Chen, W.-L., Zhang, L. Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Infarto Cerebral , Feminino , Inativação Gênica , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/genética , Ratos , Proteínas Repressoras/genética , Linfócitos T Reguladores/metabolismo , Regulação para Cima
16.
Chem Rec ; 20(6): 604-616, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31805219

RESUMO

Catalytic dehydrogenation of light alkanes can effectively produce olefins and hydrogen. Even though Pt and CrOx -based catalysts are widely applied in industry, research to improve the activity and stability of these catalysts continued. This review summarizes important achievements obtained in recent years, focusing on the development of supports, promoters and preparation methods of Pt and CrOx -based catalysts, which mainly aimed to improve the dispersion of the active species and to enhance coke resistance. Furthermore, the high cost of Pt-based catalysts and environmental problems encountered with CrOx -based catalysts have spurred the development of alternative catalysts. The dehydrogenation performances and characteristics of promising alternative VOx -, modified Ni- and Sn-based catalysts are also reviewed. Comparison with the catalytic reforming process of naphtha further probes the necessity of catalyst acidity in these two different processes. The choice of the dehydrogenation reactor is discussed, and future perspectives and research directions are indicated.

17.
BMC Genomics ; 20(1): 173, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836939

RESUMO

BACKGROUND: With the unprecedented rapid growth rate (up to 2.75 cm/day), velvet antler is an invaluable model for the identification of potent growth factors and signaling networks for extremely fast growing tissues, mainly cartilage. Antler growth center (AGC) locates in its tip and consists of five tissue layers: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA) and mineralized cartilage (MC). The aim of this study was to investigate the transcription dynamics in the AGC using RNA-seq technology. RESULTS: Five tissue layers in the AGC were collected from three 3-year-old male sika deer using our previously reported sampling method (morphologically distinguishable). After sequencing (15 samples; triplicates/tissue layer), we assembled a reference transcriptome de novo and used RNA-seq to measure gene expression profiles across these five layers. Nine differentially expressed genes (DEGs) were selected from our data and subsequently verified using qRT-PCR. The results showed a high consistency with the RNA-seq results (R2 = 0.80). Nine modules were constructed based on co-expression network analysis, and these modules contained 370 hub genes. These genes were found to be mainly involved in mesenchymal progenitor cell proliferation, chondrogenesis, osteogenesis and angiogenesis. Combination of our own results with the previously published reports, we found that Wnt signaling likely plays a key role not only in stimulating the antler stem cells or their immediate progeny, but also in promoting chondrogenesis and osteogenesis during antler development. CONCLUSION: We have successfully assembled a reference transcriptome, generated gene expression profiling across the five tissue layers in the AGC, and identified nine co-expressed modules that contain 370 hub genes and genes predorminantly expressed in and highly relevant to each tissue layer. We believe our findings have laid the foundation for the identification of novel genes for rapid proliferation and chondrogenic differentiation of antler cells.


Assuntos
Diferenciação Celular/genética , Cervos/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Animais , Chifres de Veado/crescimento & desenvolvimento , Cartilagem/crescimento & desenvolvimento , Condrogênese/genética , Cervos/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Especificidade de Órgãos/genética , Osteogênese/genética
18.
Funct Integr Genomics ; 19(4): 555-564, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673893

RESUMO

Antler regeneration, a stem cell-based epimorphic process, has a potential as a valuable model for regenerative medicine. A pool of antler stem cells (ASCs) for antler development is located in the antlerogenic periosteum (AP). However, whether this ASC pool is homogenous or heterogeneous has not been fully evaluated. In this study, we produced a comprehensive transcriptome dataset at the single-cell level for the ASCs based on the 10× Genomics platform (scRNA-seq). A total of 4565 ASCs were sequenced and classified into a large cell cluster, indicating that the ASC resident in the AP are likely to be a homogeneous population. The scRNA-seq data revealed that tumor-related genes were highly expressed in these homogeneous ASCs, i.e., TIMP1, TMSB10, LGALS1, FTH1, VIM, LOC110126017, and S100A4. Results of screening for stem cell markers suggest that the ASCs may be considered as a special type of stem cell between embryonic (CD9) and adult (CD29, CD90, NPM1, and VIM) stem cells. Our results provide the first comprehensive transcriptome analysis at the single-cell level for the ASCs and identified only one major cell type resident in the AP and some key stem cell genes, which may hold the key to why antlers, the unique mammalian organ, can fully regenerate once lost.


Assuntos
Chifres de Veado/citologia , Células-Tronco/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Células Cultivadas , Cervos , Masculino , Medicina Regenerativa/métodos , Análise de Célula Única , Células-Tronco/citologia
19.
Gen Comp Endocrinol ; 283: 113235, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369730

RESUMO

Deer antlers offer a unique model to study organ regeneration in mammals. Antler regeneration relies on the pedicle periosteum (PP) cells and is triggered by a decrease in circulating testosterone (T). The molecular mechanism for antler regeneration is however, unclear. Label-free liquid chromatography-mass spectrometry (LC-MS/MS) was used to identify differentially-expressed proteins (DEPs) in the regeneration-potentiated PP (under low T environment) over the non-regeneration-potentiated PP (under high T environment). Out of total 273 DEPs, 189 were significantly up-regulated and 84 were down-regulated from these comparisons: after castration vs before castration, natural T vs before castration, and exogenous T vs before castration. We focused on the analysis only of those DEPs that were present in fully permissive environment to antler regeneration (low T). Nine transduction pathways were identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, including the estrogen signaling pathway. A total of 639 gene ontology terms were found to be significantly enriched in regeneration-potentiated PP (low T) from the DEPs. Reliability of the label free LC-MS/MS was determined by qRT-PCR to estimate the expression level of selected genes. The results suggest that up-regulated heat shock proteins (HSP90AB1, HSP90B1), peptidyl-prolyl cis-trans isomerase 4 (FKBP4), mitogen-activated protein kinase 3 (MAPK3) and calreticulin (CALR) and down-regulated SHC-transforming protein 1 (SHC1), heat shock protein family A member 1A (HSPA1A) and proto-oncogene tyrosine-protein kinase (SRC) may be associated directly or indirectly with antler regeneration. Further studies are required to investigate the roles of these proteins in regeneration using appropriate in vivo models.


Assuntos
Androgênios/metabolismo , Chifres de Veado/fisiologia , Cervos/metabolismo , Proteômica , Regeneração/fisiologia , Androgênios/sangue , Animais , Cromatografia Líquida , Regulação da Expressão Gênica , Ontologia Genética , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Espectrometria de Massas em Tandem , Testosterona/sangue
20.
Int J Mol Sci ; 19(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400663

RESUMO

Deer antlers are unusual mammalian organs that can fully regenerate after annual shedding. Stem cells resident in the pedicle periosteum (PPCs) provide the main cell source for antler regeneration. Central to various cellular processes are plasma membrane proteins, but the expression of these proteins has not been well documented in antler regeneration. In the present study, plasma membrane proteins of PPCs and facial periosteal cells (FPCs) were analyzed using label-free liquid chromatography⁻mass spetrometry (LC⁻MS/MS). A total of 1739 proteins were identified. Of these proteins, 53 were found solely in the PPCs, 100 solely in the FPCs, and 1576 co-existed in both PPCs and FPCs; and 39 were significantly up-regulated in PPCs and 49 up-regulated in FPCs. In total, 226 gene ontology (GO) terms were significantly enriched from the differentially expressed proteins (DEPs). Five clusters of biological processes from these GO terms comprised responses to external stimuli, signal transduction, membrane transport, regulation of tissue regeneration, and protein modification processes. Further studies are required to demonstrate the relevancy of these DEPs in antler stem cell biology and antler regeneration.


Assuntos
Chifres de Veado/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Células-Tronco/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Cervos , Matriz Extracelular/metabolismo , Ontologia Genética , Masculino , Periósteo/citologia , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa