Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biotechnol Bioeng ; 120(5): 1346-1356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779277

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.


Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , Oxirredução
2.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33514518

RESUMO

Shewanella oneidensis is a model strain of the electrochemical active bacteria (EAB) because of its strong capability of extracellular electron transfer (EET) and genetic tractability. In this study, we investigated the effect of carbon sources on EET in S. oneidensis by using reduction of palladium ions (Pd(II)) as a model and found that pyruvate greatly accelerated the Pd(II) reduction compared with lactate by resting cells. Both Mtr pathway and hydrogenases played a role in Pd(II) reduction when pyruvate was used as a carbon source. Furthermore, in comparison with lactate-feeding S. oneidensis, the transcriptional levels of formate dehydrogenases involving in pyruvate catabolism, Mtr pathway, and hydrogenases in pyruvate-feeding S. oneidensis were up-regulated. Mechanistically, the enhancement of electron generation from pyruvate catabolism and electron transfer to Pd(II) explains the pyruvate effect on Pd(II) reduction. Interestingly, a 2-h time window is required for pyruvate to regulate transcription of these genes and profoundly improve Pd(II) reduction capability, suggesting a hierarchical regulation for pyruvate sensing and response in S. oneidensis IMPORTANCE The unique respiration of EET is crucial for the biogeochemical cycling of metal elements and diverse applications of EAB. Although a carbon source is a determinant factor of bacterial metabolism, the research into the regulation of carbon source on EET is rare. In this work, we reported the pyruvate-specific regulation and improvement of EET in S. oneidensis and revealed the underlying mechanism, which suggests potential targets to engineer and improve the EET efficiency of this bacterium. This study sheds light on the regulatory role of carbon sources in anaerobic respiration in EAB, providing a way to regulate EET for diverse applications from a novel perspective.

3.
Nanotechnology ; 31(35): 354002, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32403091

RESUMO

A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO2-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/H2O ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/H2O ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.


Assuntos
Citocromos/química , Citocromos/metabolismo , Heme/química , Rodopseudomonas/fisiologia , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas , Transporte de Elétrons , Modelos Moleculares , Fotossíntese , Conformação Proteica
4.
Biotechnol Bioeng ; 116(5): 961-971, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659584

RESUMO

Dissimilatory metal reducer Geobacter sulfurreducens can mediate redox processes through extracellular electron transfer and exhibit potential-dependent electrochemical activity in biofilm. Understanding the microbial acclimation to potential is of critical importance for developing robust electrochemically active biofilms and facilitating their environmental, geochemical, and energy applications. In this study, the metabolism and redox conduction behaviors of G. sulfurreducens biofilms developed at different potentials were explored. We found that electrochemical acclimation occurred at the initial hours of polarizing G. sulfurreducens cells to the potentials. Two mechanisms of acclimation were found, depending on the polarizing potential. In the mature biofilms, a low level of biosynthesis and a high level of catabolism were maintained at +0.2 V versus standard hydrogen electrode (SHE). The opposite results were observed at potentials higher than or equal to +0.4 V versus SHE. The potential also regulated the constitution of the electron transfer network by synthesizing more extracellular cytochrome c such as OmcS at 0.0 and +0.2 V and exhibited a better conductivity. These findings provide reasonable explanations for the mechanism governing the electrochemical respiration and activity in G. sulfurreducens biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Potenciais da Membrana/fisiologia
5.
Biotechnol Bioeng ; 114(4): 761-768, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27869299

RESUMO

Dinitrotoluene (DNT) is a widely present pollutant in aquatic environments, and its biodegradation is an economically attractive way to effectively removal. In aquatic environments, the presence of electrochemically active bacteria (EAB) could contribute to the anaerobic bioreduction of DNT. However, the mechanism behind such a biodegradation process at gene level remains to be further elucidated. In this work, the anaerobic reduction of 2,6-dinitrotoluene (2,6-DNT) by Shewanella oneidensis MR-1, a typical EAB in aquatic environments, was investigated. S. oneidensis MR-1 was found to be able to obtain energy for growth through the anaerobic respiration on 2,6-DNT. Experimental results show that the Mtr respiratory pathway, a transmembrane electron transport chain, was involved in the 2,6-DNT bioreduction. Knockout of cymA or nfnB resulted in a substantial loss of its 2,6-DNT-reducing ability, indicating that both CymA and NfnB were the key proteins in the microbial electron transfer chain. The genetic analysis further confirms that the Mtr respiratory pathway and NfnB are mainly responsible for the anaerobic reduction of 2,6-DNT by S. oneidensis MR-1. This work is useful to better understand the anaerobic bioreduction of nitroaromatic compounds in aquatic environments and remediate the environments contaminated by nitroaromatic compounds. Biotechnol. Bioeng. 2017;114: 761-768. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Dinitrobenzenos/metabolismo , Nitrorredutases/metabolismo , Shewanella/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Dinitrobenzenos/química , Nitrorredutases/genética , Oxirredução , Riboflavina/metabolismo
6.
Environ Sci Technol ; 51(15): 8616-8623, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671824

RESUMO

Azo dyes are a class of recalcitrant organic pollutants causing severe environmental pollution. For their biodecolorization, the azo reductase system was considered as the major molecular basis in bacteria. However, the intracellular localization of azo reductase limits their function for efficient azo dye decolorization. This limitation may be circumvented by electrochemically active bacteria (EAB) which is capable of extracellular respiration. To verify the essential role of extracellular respiration in azo dye decolorization, Geobacter sulfurreducens PCA, a model EAB, was used for the bioreduction of methyl orange (MO), a typical azo dye. G. sulfurreducens PCA efficiently reduced MO into amines. Kinetic results showed that G. sulfurreducens PCA had the highest decolorization efficiency among the currently known MO reducing bacteria. Electrons from acetate oxidization by this strain were transferred by the respiratory chain to MO. The mass and electron balances, fluorescent probing and proteinase K treatment experimental results indicate that the biodecolorization of MO by G. sulfurreducens PCA is an exclusive extracellular process. OmcB, OmcC and OmcE were identified as the key outer-membrane proteins for the extracellular MO reduction. This work deepens our understanding of EAB physiology and is useful for the decontamination of environments polluted with azo dyes. The contribution of extracellular respiration to pollutants reduction will broaden the environmental applications of EAB.


Assuntos
Compostos Azo/metabolismo , Geobacter , Corantes , Oxirredutases
7.
Environ Sci Technol ; 51(9): 5082-5089, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28414427

RESUMO

Dissimilatory metal reducing bacteria (DMRB) are capable of extracellular electron transfer (EET) to insoluble metal oxides, which are used as external electron acceptors by DMRB for their anaerobic respiration. The EET process has important contribution to environmental remediation mineral cycling, and bioelectrochemical systems. However, the low EET efficiency remains to be one of the major bottlenecks for its practical applications for pollutant degradation. In this work, Shewanella oneidensis MR-1, a model DMRB, was used to examine the feasibility of enhancing the EET and its biodegradation capacity through genetic engineering. A flavin biosynthesis gene cluster ribD-ribC-ribBA-ribE and metal-reducing conduit biosynthesis gene cluster mtrC-mtrA-mtrB were coexpressed in S. oneidensis MR-1. Compared to the control strain, the engineered strain was found to exhibit an improved EET capacity in microbial fuel cells and potentiostat-controlled electrochemical cells, with an increase in maximum current density by approximate 110% and 87%, respectively. The electrochemical impedance spectroscopy (EIS) analysis showed that the current increase correlated with the lower interfacial charge-transfer resistance of the engineered strain. Meanwhile, a three times more rapid removal rate of methyl orange by the engineered strain confirmed the improvement of its EET and biodegradation ability. Our results demonstrate that coupling of improved synthesis of mediators and metal-reducing conduits could be an efficient strategy to enhance EET in S. oneidensis MR-1, which is essential to the applications of DMRB for environmental remediation, wastewater treatment, and bioenergy recovery from wastes.


Assuntos
Elétrons , Shewanella/metabolismo , Transporte de Elétrons , Flavinas , Metais/metabolismo
8.
Phys Chem Chem Phys ; 16(42): 23003-11, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25238285

RESUMO

The ability of dissimilatory metal-reducing microorganisms (DMRM) to conduct extracellular electron transfer with conductive cellular components grants them great potential for bioenergy and environmental applications. Crystalline Fe(III) oxide, a type of widespread electron acceptor for DMRM in nature, can be excited by light for photocatalysis and microbial culture-mediated photocurrent production. However, the feasibility of direct electron transfer from living cells to light-excited Fe(III) oxides has not been well documented and the cellular physiology in this process has not been clarified. To resolve these problems, an electrochemical system composed of Geobacter sulfurreducens and hematite (α-Fe2O3) was constructed, and direct electron transfer from G. sulfurreducens cells to the light-excited α-Fe2O3 in the absence of soluble electron shuttles was observed. Further studies evidenced the efficient excitation of α-Fe2O3 and the dependence of photocurrent production on the biocatalytic activity. Light-induced electron transfer on the cell-α-Fe2O3 interface correlated linearly with the rates of microbial respiration and substrate consumption. In addition, the G. sulfurreducens cells were found to survive on light-excited α-Fe2O3. These results prove a direct mechanism behind the DMRM respiration driven by photo-induced charge separation in semiconductive acceptors and also imply new opportunities to design photo-bioelectronic devices with living cells as a catalyst.


Assuntos
Biocatálise/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/metabolismo , Geobacter/metabolismo , Geobacter/efeitos da radiação , Luz , Transporte de Elétrons/efeitos da radiação , Geobacter/química , Geobacter/citologia
9.
Biotechnol Bioeng ; 110(1): 173-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22886619

RESUMO

Biofuel cells (BFCs) use enzymes and microbial cells to produce energy from bioavailable substrates and treat various wastewaters, and cathodic oxygen reduction is a key factor governing the efficiency of BFCs. In this study, we demonstrated that a green alga, Chlamydomonas reinhardtii, could directly mediate oxygen reduction. Cyclic voltammogram analysis revealed that the C. reinhardtii biofilm formed on a solid electrode was responsible for oxygen reduction without dosing of electron mediator. Furthermore, 4-electron oxygen reduction pathway was found in this self-sustained, light-responded BFC. The results of this study could expand our understanding and viewpoints of biocathode catalysis, which is essential for novel catalyst design and development for BFCs.


Assuntos
Processos Autotróficos/fisiologia , Fontes de Energia Bioelétrica , Reatores Biológicos , Chlamydomonas reinhardtii/metabolismo , Oxigênio/metabolismo , Biocombustíveis , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/fisiologia , Eletrodos , Cinética , Oxirredução
10.
Environ Sci Technol ; 47(2): 1033-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23244024

RESUMO

Phenazines, as a type of electron shuttle, are involved in various biological processes to facilitate microbial energy metabolism and electron transfer. They constitute a large group of nitrogen-containing heterocyclic compounds, which can be produced by a diverse range of bacteria or by artificial synthesis. They vary significantly in their properties, depending mainly on the nature and position of substitutent group. Thus, it is of great interest to find out the most favorable substituent type and molecular structure of phenazines for electron transfer routes. Here, the impacts of the substituent group on the reduction potentials of phenazine-type redox mediators in aqueous solution were investigated by quantum chemical calculations, and the calculation results were further validated with experimental data. The results show that the reaction free energy was substantially affected by the location of substituent groups on the phenazine molecule and the protonated water clusters. For the main proton addition process, the phenazines substituted with electron-donating groups and those with electron-withdrawing groups interacted with different protonated water clusters, attributed to the proximity effect of water molecules on proton transfer. Thus, high energy conversion efficiency could be achieved by controlling electron flow route with appropriate substituted phenazines to reduce the biological energy acquisition. This study provides useful information for designing efficient redox mediators to promote electron transfer between microbes and terminal acceptors, which are essential to bioenergy recovery from wastes and environmental bioremediation.


Assuntos
Bactérias/metabolismo , Fenazinas/química , Biodegradação Ambiental , Transporte de Elétrons , Modelos Moleculares , Oxirredução , Prótons , Teoria Quântica , Termodinâmica , Água/química
11.
ACS Nano ; 13(5): 5841-5851, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30969107

RESUMO

Biosynthesis offers opportunities for cost-effective and sustainable production of semiconductor quantum dots (QDs), but is currently restricted by poor controllability on the synthesis process, resulting from limited knowledge on the assembly mechanisms and the lack of effective control strategies. In this work, we provide molecular-level insights into the formation mechanism of biogenic QDs (Bio-QDs) and its connection with the cellular substrate metabolism in Escherichia coli. Strengthening the substrate metabolism for producing more reducing power was found to stimulate the production of several reduced thiol-containing proteins (including glutaredoxin and thioredoxin) that play key roles in Bio-QDs assembly. This effectively diverted the transformation route of the selenium (Se) and cadmium (Cd) metabolic from Cd3(PO4)2 formation to CdS xSe1- x QDs assembly, yielding fine-sized (2.0 ± 0.4 nm), high-quality Bio-QDs with quantum yield (5.2%) and fluorescence lifetime (99.19 ns) far exceeding the existing counterparts. The underlying mechanisms of Bio-QDs crystallization and development were elucidated by density functional theory calculations and molecular dynamics simulation. The resulting Bio-QDs were successfully used for bioimaging of cancer cells and tumor tissue of mice without extra modification. Our work provides fundamental knowledge on the Bio-QDs assembly mechanisms and proposes an effective, facile regulation strategy, which may inspire advances in controlled synthesis and practical applications of Bio-QDs as well as other bionanomaterials.


Assuntos
Cádmio/química , Imagem Molecular/métodos , Pontos Quânticos/química , Selênio/química , Animais , Cádmio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluorescência , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Pontos Quânticos/metabolismo , Selênio/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Tiorredoxinas/química , Tiorredoxinas/genética
12.
ACS Appl Mater Interfaces ; 10(41): 35090-35098, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30247017

RESUMO

A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 µA cm-2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.


Assuntos
Fontes de Energia Bioelétrica , Citocromos/química , Técnicas Eletroquímicas , Geobacter/metabolismo , Grafite/química , Riboflavina/química
13.
Chemosphere ; 211: 345-351, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077930

RESUMO

Ciprofloxacin (CIP), as an extensively used antibiotic, has been widely detected at a high level in the environment and has raised environmental pollution concerns. Thus, efficient and cost-effective methods for CIP degradation are highly desired. Biologically produced manganese oxides (BioMnOx) offer a promising perspective for CIP degradation because of their catalytic reactivity and cost-effectiveness. However, the release of Mn(II) from BioMnOx prevents the further oxidation of pollutants. As a consequence, continuous CIP degradation by BioMnOx is not feasible. In this work, a manganese redox cycling system driven by Pseudomonas putida MnB-1 was constructed for continuous degradation of CIP. In such a system CIP was oxidized continuously and rapidly by re-oxidizing the formed Mn(II) to regenerate reactive BioMnOx, which also protected the strain from CIP toxicity. CIP was degraded through N-dealkylation passway. No significant loss of BioMnOx reactivity was observed in three-cycle CIP degradation process, suggesting the stability of this system. An overlooked intracellular BioMnOx, which was involved in CIP degradation, was discovered in P. putida MnB-1. Moreover, the important role of Mn(III) in facilitating CIP removal in this system was also identified. This work provides useful information to better understand the degradation of antibiotic compounds mediated by microbes in environments.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Manganês/química , Manganês/metabolismo , Pseudomonas putida/metabolismo , Oxirredução
14.
Enzyme Microb Technol ; 95: 230-235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866620

RESUMO

Photothermal therapy (PTT) is a minimally invasive and effective cancer treatment method and has a great potential for innovating the conventional chemotherapy approaches. Copper sulfide (CuS) exhibits photostability, low cost, and high absorption in near infrared region, and is recognized as an ideal candidate for PTT. However, CuS, as a photothermal agent, is usually synthesized with traditional chemical approaches, which require high temperature, additional stabilization and hydrophilic modification. Herein, we report, for the first time, the preparation of CuS nanoparticles as a photothermal agent by a dissimilatory metal reducing bacterium Shewanella. oneidensis MR-1. The prepared nanoparticles are homogenously shaped, hydrophilic, small-sized (∼5nm) and highly stable. Furthermore, the biosynthesized CuS nanoparticles display a high photothermal conversion efficiency of 27.2% because of their strong absorption at 1100nm. The CuS nanoparticles could be effectively used as a PTT agent under the irradiation of 1064nm. This work provides a simple, eco-friendly and cost-effective approach for fabricating PTT agents.


Assuntos
Cobre/química , Cobre/metabolismo , Nanopartículas Metálicas/química , Shewanella/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Linhagem Celular Tumoral , Cobre/farmacologia , Química Verde , Humanos , Hipertermia Induzida , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Processos Fotoquímicos , Sulfetos/farmacologia
15.
Sci Rep ; 4: 3735, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24435070

RESUMO

In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.


Assuntos
Periplasma/metabolismo , Ácido Selenioso/metabolismo , Shewanella/metabolismo , Succinato Desidrogenase/metabolismo , Membrana Celular/metabolismo , Transporte de Elétrons , Espaço Extracelular/metabolismo , Redes e Vias Metabólicas , Mutação , Shewanella/genética , Transdução de Sinais
16.
Sci Rep ; 4: 3732, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24429552

RESUMO

Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.


Assuntos
Transporte de Elétrons , Nanotubos de Carbono/microbiologia , Shewanella/metabolismo , Técnicas Eletroquímicas , Eletroquímica , Eletrodos/microbiologia
17.
Bioresour Technol ; 136: 711-4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23558182

RESUMO

Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.


Assuntos
Elétrons , Espaço Extracelular/metabolismo , Mononucleotídeo de Flavina/metabolismo , Riboflavina/metabolismo , Shewanella/metabolismo , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Compostos Férricos/metabolismo , Metilaminas/farmacologia , Oxirredução/efeitos dos fármacos , Shewanella/efeitos dos fármacos
18.
PLoS One ; 8(11): e78466, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244312

RESUMO

The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications.


Assuntos
Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Compostos Férricos/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/biossíntese , Grupo dos Citocromos c/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
19.
Water Res ; 46(14): 4371-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22698252

RESUMO

The electro-Fenton process is efficient for degradation of organic pollutants, but it suffers from the high operating costs due to the need of power investment. Here, a new anodic Fenton system is developed for energy-saving and efficient treatment of organic pollutants by incorporating microbial fuel cell (MFC) into an anodic Fenton process. This system is composed of an anodic Fenton reactor and a two-chamber air-cathode MFC. The power generated from a two-chamber MFC is used to drive the anodic Fenton process for Acid Orange 7 (AO7) degradation through accelerating in situ generation of Fe(2+) from sacrificial iron. The kinetic results show that the MFC-assisted anodic Fenton process system had a significantly higher pseudo-first-order rate constant than those for the chemical Fenton methods. The electrochemical analysis reveals that AO7 did not hinder the corrosion of iron. The anodic Fenton process was influenced by the MFC performance. It was also found that increasing dissolved oxygen in the cathode improved the MFC power density, which in turn enhanced the AO7 degradation rate. These clearly demonstrate that the anodic Fenton process could be integrated with MFC to develop a self-sustained system for cost-effective and energy-saving electrochemical wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Peróxido de Hidrogênio/química , Ferro/química , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Corrosão , Eletrodos , Cinética , Oxigênio/análise , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa