Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(22): 2097-2111, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35507481

RESUMO

BACKGROUND: The ZF2001 vaccine, which contains a dimeric form of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 and aluminum hydroxide as an adjuvant, was shown to be safe, with an acceptable side-effect profile, and immunogenic in adults in phase 1 and 2 clinical trials. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial to investigate the efficacy and confirm the safety of ZF2001. The trial was performed at 31 clinical centers across Uzbekistan, Indonesia, Pakistan, and Ecuador; an additional center in China was included in the safety analysis only. Adult participants (≥18 years of age) were randomly assigned in a 1:1 ratio to receive a total of three 25-µg doses (30 days apart) of ZF2001 or placebo. The primary end point was the occurrence of symptomatic coronavirus disease 2019 (Covid-19), as confirmed on polymerase-chain-reaction assay, at least 7 days after receipt of the third dose. A key secondary efficacy end point was the occurrence of severe-to-critical Covid-19 (including Covid-19-related death) at least 7 days after receipt of the third dose. RESULTS: Between December 12, 2020, and December 15, 2021, a total of 28,873 participants received at least one dose of ZF2001 or placebo and were included in the safety analysis; 25,193 participants who had completed the three-dose regimen, for whom there were approximately 6 months of follow-up data, were included in the updated primary efficacy analysis that was conducted at the second data cutoff date of December 15, 2021. In the updated analysis, primary end-point cases were reported in 158 of 12,625 participants in the ZF2001 group and in 580 of 12,568 participants in the placebo group, for a vaccine efficacy of 75.7% (95% confidence interval [CI], 71.0 to 79.8). Severe-to-critical Covid-19 occurred in 6 participants in the ZF2001 group and in 43 in the placebo group, for a vaccine efficacy of 87.6% (95% CI, 70.6 to 95.7); Covid-19-related death occurred in 2 and 12 participants, respectively, for a vaccine efficacy of 86.5% (95% CI, 38.9 to 98.5). The incidence of adverse events and serious adverse events was balanced in the two groups, and there were no vaccine-related deaths. Most adverse reactions (98.5%) were of grade 1 or 2. CONCLUSIONS: In a large cohort of adults, the ZF2001 vaccine was shown to be safe and effective against symptomatic and severe-to-critical Covid-19 for at least 6 months after full vaccination. (Funded by the National Science and Technology Major Project and others; ClinicalTrials.gov number, NCT04646590.).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de Subunidades Antigênicas , Adolescente , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Método Duplo-Cego , Humanos , SARS-CoV-2 , Vacinação , Vacinas , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto Jovem
2.
New Phytol ; 241(5): 2090-2107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168024

RESUMO

High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.


Assuntos
Gossypium , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108752

RESUMO

Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is less effective in promoting leaf shedding. In this study, the enzyme-linked immunosorbent assays (ELISA) and RNA-seq were used to determine specific changes at hormonal levels as well as transcriptomic mechanisms induced by TDZ compared with Eth. The TDZ significantly reduced the levels of auxin and cytokinin in cotton leaves, but no considerable changes were observed for Eth. In addition, TDZ specifically increased the levels of brassinosteroids and jasmonic acid in the leaves. A total of 13 764 differentially expressed genes that specifically responded to TDZ were identified by RNA-seq. The analysis of KEGG functional categories suggested that the synthesis, metabolism, and signal transduction of auxin, cytokinin, and brassinosteroid were all involved in the TDZ-induced abscission of cotton leaves. Eight auxin transport genes (GhPIN1-c_D, GhPIN3_D, GhPIN8_A, GhABCB19-b_A, GhABCB19-b_D, GhABCB2-b_D, GhLAX6_A, and GhLAX7_D) specifically responded to TDZ. The pro35S::GhPIN3a::YFP transgenic plants showed lower defoliation than the wild type treated with TDZ, and YFP fluorescence in leaves was almost extinguished after treatment with TDZ rather than Eth. This provides direct evidence that GhPIN3a is involved in the leaf abscission induced by TDZ. We found that 959 transcription factors (TFs) specifically responded to TDZ, and a co-expression network analysis (WGCNA) showed five hub TFs (GhNAC72, GhWRKY51, GhWRKY70, GhWRKY50, and GhHSF24) during chemical defoliation with TDZ. Our work sheds light on the molecular basis of TDZ-induced leaf abscission in cotton.


Assuntos
Etilenos , Transcriptoma , Etilenos/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269837

RESUMO

Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Etilenos , Ácidos Indolacéticos/metabolismo , Compostos de Fenilureia , Folhas de Planta/metabolismo , Tiadiazóis
5.
J Exp Bot ; 72(18): 6659-6671, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34161578

RESUMO

Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.


Assuntos
Giberelinas , Gossypium , Membrana Celular , Gossypium/genética , Peróxido de Hidrogênio , Piperidinas , Raízes de Plantas , ATPases Translocadoras de Prótons
6.
BMC Vet Res ; 17(1): 348, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772402

RESUMO

BACKGROUND: Herbal tea residue (HTR) is generally considered to be the waste of herbal tea beverage production while it still retains rich nutrients and active substances. The main aim of the present study was to investigate the effect of fermentation technology on improving the quality of HTRs, and focus on the fermented HTR-induced alleviation of summer heat stress in fattening cattle. RESULTS: In this study, the waste HTR was fermented and then fed to a total of 45 fattening cattle that were divided into 3 groups (fermented HTR replaced 0, 15, 30% of the forage component of the diet), and the feeding experiment was lasted for 40 days. The physiological indexes, growth performance and fecal microbiota of fattening cattle were evaluated and results showed that fermented HTR could effectively reduce the respiratory rate and rectal temperature of fattening cattle under heat stress, increase the daily feed intake and daily gain, and improve the antioxidant content and blood immune index. In addition, we studied the fecal microbiota composition of 6 fattening cattle in control and 30% HTR substitution groups and found fermented HTR significantly changed the composition of fecal microbiota and increased microbial diversity, and correlation analysis suggested that the bacteria were closely related to fecal SCFA levels of fattening cattle under heat stress. CONCLUSIONS: In this study, fermented HTR replaced 30% of the forage component of the diet that can change the intestine microorganisms, maintain health and alleviate the heat stress of fattening cattle.


Assuntos
Bebidas , Doenças dos Bovinos/terapia , Dieta/veterinária , Indústria Alimentícia , Transtornos de Estresse por Calor/veterinária , Resíduos Industriais , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Doenças dos Bovinos/prevenção & controle , Fezes/microbiologia , Feminino , Fermentação , Transtornos de Estresse por Calor/prevenção & controle , Transtornos de Estresse por Calor/terapia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
7.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808570

RESUMO

To properly understand cotton responses to potassium (K+) deficiency and how its shoot feedback regulates K+ uptake and root growth, we analyzed the changes in root transcriptome induced by low K+ (0.03 mM K+, lasting three days) in self-grafts of a K+ inefficient cotton variety (CCRI41/CCRI41, scion/rootstock) and its reciprocal grafts with a K+ efficient variety (SCRC22/CCRI41). Compared with CCRI41/CCRI41, the SCRC22 scion enhanced the K+ uptake and root growth of CCRI41 rootstock. A total of 1968 and 2539 differently expressed genes (DEGs) were identified in the roots of CCRI41/CCRI41 and SCRC22/CCRI41 in response to K+ deficiency, respectively. The overlapped and similarly (both up- or both down-) regulated DEGs in the two grafts were considered the basic response to K+ deficiency in cotton roots, whereas the DEGs only found in SCRC22/CCRI41 (1954) and those oppositely (one up- and the other down-) regulated in the two grafts might be the key factors involved in the feedback regulation of K+ uptake and root growth. The expression level of four putative K+ transporter genes (three GhHAK5s and one GhKUP3) increased in both grafts under low K+, which could enable plants to cope with K+ deficiency. In addition, two ethylene response factors (ERFs), GhERF15 and GhESE3, both down-regulated in the roots of CCRI41/CCRI41 and SCRC22/CCRI41, may negatively regulate K+ uptake in cotton roots due to higher net K+ uptake rate in their virus-induced gene silencing (VIGS) plants. In terms of feedback regulation of K+ uptake and root growth, several up-regulated DEGs related to Ca2+ binding and CIPK (CBL-interacting protein kinases), one up-regulated GhKUP3 and several up-regulated GhNRT2.1s probably play important roles. In conclusion, these results provide a deeper insight into the molecular mechanisms involved in basic response to low K+ stress in cotton roots and feedback regulation of K+ uptake, and present several low K+ tolerance-associated genes that need to be further identified and characterized.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Deficiência de Potássio/genética , Deficiência de Potássio/metabolismo , Potássio/metabolismo , Biomarcadores , Biomassa , Clorofila/metabolismo , Biologia Computacional/métodos , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Fenótipo , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
8.
BMC Bioinformatics ; 21(1): 232, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513106

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and accounts for cancer-related deaths. Survival rates are very low when the tumor is discovered in the late-stage. Thus, developing an efficient strategy to stratify patients by the stage of the cancer and inner mechanisms that drive the development and progression of cancers is critical in early prevention and treatment. RESULTS: In this study, we developed new strategies to extract important gene features and trained machine learning-based classifiers to predict stages of ccRCC samples. The novelty of our approach is that (i) We improved the feature preprocessing procedure by binning and coding, and increased the stability of data and robustness of the classification model. (ii) We proposed a joint gene selection algorithm by combining the Fast-Correlation-Based Filter (FCBF) search with the information value, the linear correlation coefficient, and variance inflation factor, and removed irrelevant/redundant features. Then the logistic regression-based feature selection method was used to determine influencing factors. (iii) Classification models were developed using machine learning algorithms. This method is evaluated on RNA expression value of clear cell renal cell carcinoma derived from The Cancer Genome Atlas (TCGA). The results showed that the result on the testing set (accuracy of 81.15% and AUC 0.86) outperformed state-of-the-art models (accuracy of 72.64% and AUC 0.81) and a gene set FJL-set was developed, which contained 23 genes, far less than 64. Furthermore, a gene function analysis was used to explore molecular mechanisms that might affect cancer development. CONCLUSIONS: The results suggested that our model can extract more prognostic information, and is worthy of further investigation and validation in order to understand the progression mechanism.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Aprendizado de Máquina , Área Sob a Curva , Carcinoma de Células Renais/genética , Feminino , Humanos , Neoplasias Renais/genética , Modelos Logísticos , Estadiamento de Neoplasias , RNA/metabolismo , Curva ROC
9.
Plant Cell Physiol ; 60(4): 888-899, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649443

RESUMO

Potassium (K) deficiency is a key limiting factor in cotton (Gossypium hirsutum) production. By grafting two contrasting cotton cultivars, CCRI41 (more susceptible to K+ deficiency) and SCRC22 (more tolerant of K+ deficiency), we established that cotton shoot plays a vital role in the regulation of root K+ uptake. To identify the genetic basis of this finding, we performed RNA sequencing (RNA-seq) of roots of CCRI41 self-grafts (CCRI41/CCRI41, scion/rootstock) and SCRC22/CCRI41 reciprocal-grafts exposed to K+ deficiency. We found that GhHAK5a, an orthologous of Arabidopsis thaliana high-affinity K+ transporter, AtHAK5, was significantly induced in the CCRI41 rootstock by the SCRC22 scion. This gene was mainly expressed in roots and was more highly induced by K+ deficiency in roots of SCRC22 than those of CCRI41. Agrobacterium-mediated virus-induced gene silencing and yeast complementary assay showed that GhHAK5a is a high-affinity K+ uptake transporter. Importantly, silencing of GhHAK5a in the CCRI41 rootstock almost completely inhibited the K+ uptake induced by SCRC22 scion in CCRI41 rootstock. We identified a key high-affinity K+ transporter, GhHAK5a in cotton, which is the essential target for shoot regulation of root K+ uptake under K+ deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gossypium/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica , Gossypium/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Potássio/metabolismo , Deficiência de Potássio/genética , Deficiência de Potássio/metabolismo
10.
BMC Plant Biol ; 19(1): 573, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864311

RESUMO

BACKGROUND: Mepiquat chloride (MC), a plant growth regulator, enhances root growth by promoting lateral root formation in cotton. However, the underlying molecular mechanisms of this phenomenon is still unknown. METHODS: In this study, we used 10 cotton (Gossypium hirsutum Linn.) cultivars to perform a seed treatment with MC to investigate lateral root formation, and selected a MC sensitive cotton cultivar for dynamic monitor of root growth and transcriptome analysis during lateral root development upon MC seed treatment. RESULTS: The results showed that MC treated seeds promotes the lateral root formation in a dosage-depended manner and the effective promotion region is within 5 cm from the base of primary root. MC treated seeds induce endogenous auxin level by altering gene expression of both gibberellin (GA) biosynthesis and signaling and abscisic acid (ABA) signaling. Meanwhile, MC treated seeds differentially express genes involved in indole acetic acid (IAA) synthesis and transport. Furthermore, MC-induced IAA regulates the expression of genes related to cell cycle and division for lateral root development. CONCLUSIONS: Our data suggest that MC orchestrates GA and ABA metabolism and signaling, which further regulates auxin biosynthesis, transport, and signaling to promote the cell division responsible for lateral root formation.


Assuntos
Gossypium/efeitos dos fármacos , Organogênese Vegetal/efeitos dos fármacos , Piperidinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Homeostase , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
11.
New Phytol ; 223(4): 1856-1872, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30985940

RESUMO

Salinity is among the major factors limiting crop production worldwide. Despite having moderate salt-tolerance, cotton (Gossypium spp.) suffers severe yield losses to salinity stresses, largely due to being grown on saline-alkali and dry lands. To identify genetic determinants conferring salinity tolerance in cotton, we deployed a functional genomic screen using a cotton cDNA library in a virus-induced gene silencing (VIGS) vector. We have revealed that silencing of GhDsPTP3a, which encodes a protein phosphatase, increases cotton tolerance to salt stress. Yeast two-hybrid screens indicated that GhDsPTP3a interacts with GhANN8b, an annexin protein, which plays a positive role in regulating cotton response to salinity stress. Salt stress induces GhANN8b phosphorylation, which is subsequently dephosphorylated by GhDsPTP3a. Ectopic expression of GhDsPTP3a and GhANN8b oppositely regulates plant salt tolerance and calcium influx. In addition, we have revealed that silencing of GhDsPTP3a or GhANN8b exerts opposing roles in regulating GhSOS1 transcript levels, and ectopic expression of GhANN8b elevates Na+ efflux in Arabidopsis under salinity stress. Our study demonstrates that a cotton phosphatase GhDsPTP3a and an annexin protein GhANN8b interact and reversely modulate Ca2+ and Na+ fluxes in cotton salinity responses.


Assuntos
Anexinas/metabolismo , Gossypium/metabolismo , Gossypium/fisiologia , Proteínas de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , Inativação Gênica , Gossypium/genética , Íons , Modelos Biológicos , Pressão Osmótica/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
12.
Ecotoxicol Environ Saf ; 159: 261-271, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753827

RESUMO

In this study, we investigated arsenic uptake and enzymatic activities in rice seedlings after the addition of nanoparticles. Hydroponic experiments were conducted to investigate the effects of different nanomaterials (high-quality graphene oxide, multilayer graphene oxide, 20 nm hydroxyapatite (HA20), 40 nm hydroxyapatite (HA40), nano-Fe3O4 (nFe3O4) and nano-zerovalent iron [nFe]) on the biomass, arsenic uptake, and enzyme activities in seedlings of the rice cultivars T705 and X24. Compared with the control, the addition of different nanomaterials increased seedling growth, with X24 rice growing better than T705 rice. Nanomaterials effectively reduced arsenic uptake in T705 rice seedlings under low and high arsenic concentrations; however, they were only effective at lower arsenic concentrations in X24 seedlings. nFe3O4 and nFe performed better than other nanomaterials in preventing arsenic from being transported to the aboveground parts of the rice seedlings. Different nanomaterials obviously influenced enzyme activities in the T705 seedlings at low arsenic concentrations (≤ 0.8 mg L-1). High-quality and multilayer graphene oxide decreased enzyme activities in the aboveground parts of the T705 seedlings, whereas, HA20 and HA40 increased the enzyme activities. nFe3O4 and nFe also reduced the effect of antioxidants in the aboveground parts of the T705 seedlings. Nanomaterials effectively reduced the arsenic uptake of T705 and X24 rice seedlings at low arsenic concentrations.


Assuntos
Arsênio/toxicidade , Nanopartículas , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Arsênio/metabolismo , Hidroponia , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Poluentes do Solo/metabolismo
13.
New Phytol ; 215(4): 1462-1475, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28700082

RESUMO

Drought is a key limiting factor for cotton (Gossypium spp.) production, as more than half of the global cotton supply is grown in regions with high water shortage. However, the underlying mechanism of the response of cotton to drought stress remains elusive. By combining genome-wide transcriptome profiling and a loss-of-function screen using virus-induced gene silencing, we identified Gossypium hirsutum GhWRKY59 as an important transcription factor that regulates the drought stress response in cotton. Biochemical and genetic analyses revealed a drought stress-activated mitogen-activated protein (MAP) kinase cascade consisting of GhMAP3K15-Mitogen-activated Protein Kinase Kinase 4 (GhMKK4)-Mitogen-activated Protein Kinase 6 (GhMPK6) that directly phosphorylates GhWRKY59 at residue serine 221. Interestingly, GhWRKY59 is required for dehydration-induced expression of GhMAPK3K15, constituting a positive feedback loop of GhWRKY59-regulated MAP kinase activation in response to drought stress. Moreover, GhWRKY59 directly binds to the W-boxes of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2 (GhDREB2), which encodes a dehydration-inducible transcription factor regulating the plant hormone abscisic acid (ABA)-independent drought response. Our study identified a complete MAP kinase cascade that phosphorylates and activates a key WRKY transcription factor, and elucidated a regulatory module, consisting of GhMAP3K15-GhMKK4-GhMPK6-GhWRKY59-GhDREB2, that is involved in controlling the cotton drought response.


Assuntos
Secas , Gossypium/enzimologia , Gossypium/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Fosforilação , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Análise de Sequência de RNA
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(2): 167-170, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28202114

RESUMO

OBJECTIVE: To investigate the association between the serum level of brain-derived neurotrophic factor (BDNF) and the severity of asthma in children. METHODS: A total of 60 children with acute exacerbation of asthma were enrolled and divided according to the severity of the disease into mild group (n=18), moderate group (n=25), and severe group (n=17). Sixty healthy children were enrolled as controls. ELISA was used to measure the serum BDNF level in each group and the association between serum BDNF level and the severity of asthma was analyzed. RESULTS: The asthmatic children at the acute exacerbation and remission stages had significantly higher serum BDNF levels than healthy controls (P<0.05). The serum BDNF level was significantly reduced in the remission stage compared with that in the acute exacerbation stage in asthmatic children (P<0.05). The children with varying degrees of severity at the acute exacerbation stage had different serum BDNF levels: the severe group had the highest serum BDNF level and the mild group had the lowest level (P<0.05). CONCLUSIONS: BDNF may play an important role in the pathogenesis of childhood asthma and is related to the severity of the disease.


Assuntos
Asma/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Adolescente , Asma/etiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Índice de Gravidade de Doença
15.
BMC Infect Dis ; 15: 23, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608672

RESUMO

BACKGROUND: China is approaching measles elimination, but indigenous measles still circulates. County L in China has reported measles-containing vaccine (MCV) coverage rates >95% since 2000. Despite high reported coverage, a large measles outbreak occurred among young children in L County. We measured MCV coverage using 5 different methods during an investigation on this outbreak and compared our estimates with reported rates. METHODS: Reported coverage rates are determined by aggregating clinic-based data across the county: doses administered in each clinic divided by the number of children registered in each clinic. Our methods estimated coverage for the 2010-2012 birth cohort, and were (1) administrative method: doses administered in clinics divided by the birth cohort recorded in the Statistical Year Book, (2) house-to-house convenience-sample survey of children living near cases, (3) vaccination clinic records review, (4) determination of a convenience sample of measles outbreak cases' vaccination statuses and using the field vaccine efficacy outbreak equation to estimate population coverage, and (5) a seroprevalence survey using a convenience sample of residual blood samples from hospitals. RESULTS: The measles outbreak totaled 215 cases, representing an incidence of 195.8 per million population. Our estimated MCV coverage rates were: (1) administrative method: 84.1%-87.0% for MCV1 and 80.3%-90.0% for MCV2, (2) in-house survey: 83.3% of 9-17 month children received MCV1, and 74.5% of 24-47 month children received MCV2, (3) clinic record review: 85.5% of 9-17 month children received MCV1, and 73.2% of 24-59 month children received MCV2, (4) field VE method: 83.6% of 9-47 month children received one or more MCV doses, and (5) serology: seropositive rates were <80% in the 12-17 and 18-23 month age cohorts. CONCLUSIONS: Compared with reported coverage >95%, our 5 coverage assessments all showed substantially lower coverage. China should evaluate guidelines for reporting vaccination coverage and identify feasible improvements to the assessment methods.


Assuntos
Surtos de Doenças/prevenção & controle , Vacina contra Sarampo/administração & dosagem , Sarampo/epidemiologia , Vacinação/estatística & dados numéricos , Adolescente , Criança , Serviços de Saúde da Criança , Pré-Escolar , China/epidemiologia , Feminino , Promoção da Saúde , Humanos , Lactente , Masculino , Sarampo/prevenção & controle , Estudos Soroepidemiológicos
16.
Sci Total Environ ; 929: 172553, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663615

RESUMO

As a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity. Recent studies have highlighted the importance of soil moisture in regulating grassland productivity. However, the relative importance of phenology, climatic factors, and soil moisture to plant species-level productivity across China's grasslands remains poorly understood. Here, we use nearly four decades (1981 to 2018) of in situ species-level observations from 17 stations distributed across grasslands in China to examine the key mechanisms that control grassland productivity. The results reveal that soil moisture is the strongest determinant of the interannual variability in grassland productivity. In contrast, the spring/autumn phenology, the length of vegetation growing season, and climate factors have relatively minor impacts. Generally, annual aboveground biomass increases by 3.9 to 25.3 g∙m2 (dry weight) with a 1 % increase in growing season mean soil moisture across the stations. Specifically, the sensitivity of productivity to moisture in wetter and colder environments (e.g., alpine meadows) is significantly higher than that in drier and warmer environments (e.g., temperate desert steppes). In contrast, the sensitivity to the precipitation of the latter is greater than the former. The effect of soil moisture is the most pronounced during summer. Dominant herb productivity is more sensitive to soil moisture than the others. Moreover, multivariate regression analyses show that the primary climatic factors and their attributions to variations in soil moisture differ among the stations, indicating the interaction between climate and soil moisture is very complex. Our study highlights the interspecific difference in the soil moisture dependence of grassland productivity and provides guidance to climate change impact assessments in grassland ecosystems.


Assuntos
Mudança Climática , Pradaria , Solo , China , Solo/química , Estações do Ano , Monitoramento Ambiental , Biomassa , Clima
17.
J Integr Plant Biol ; 55(7): 586-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23675706

RESUMO

Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression. We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt, one of the most devastating diseases worldwide. We showed here that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt, and GhMKK2 and GhVe1 are required for its resistance to Verticillium wilt. Arabidopsis AtBAK1/SERK3, a central regulator in plant disease resistance, belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members, AtSERK1 to AtSERK5. Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome. Importantly, GhBAK1 is required for CA4002 resistance to Verticillium wilt. Surprisingly, silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton. This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control. Apparently, cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis. Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species.


Assuntos
Resistência à Doença/imunologia , Gossypium/imunologia , Gossypium/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/fisiologia , Agrobacterium/fisiologia , Sequência de Aminoácidos , Arabidopsis/microbiologia , Morte Celular , Sequência Conservada , Resistência à Doença/genética , Inativação Gênica , Gossypium/citologia , Gossypium/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
18.
Zhong Yao Cai ; 36(7): 1128-31, 2013 Jul.
Artigo em Zh | MEDLINE | ID: mdl-24417152

RESUMO

OBJECTIVE: To investigate the protective effect of hydroxy-safflor yellow A (HSYA) on the apoptosis of human umbilical vein endothelial cell (HUVECs) induced by angiotensin II (Ang II) in vitro and explore its mechanism. METHODS: The HUVECs was subcultured in vitro and used for experiment that divided into five groups as follows: control group, Ang II-injured group (1 micromoL/L), low-dosage of HSYA group (10 micromoL/L), mid-dosage of HSYA group (30 micromoL/L) and high-dosage of HYSA group (100 micromoL/L). MTT was used to determine the HUVECs viability. Reactive oxygen species (ROS) were measured with laser scanning confocal microscopy (LSCM), Cytochrome C oxidase activity was detected by BCA method. Apoptosis rate of the HUVECs was analyzed by flow cytometry. The expression of apoptosis-related protein caspase-3 was measured by western blot. RESULTS: Compared with control group, Ang II could increase the level of ROS, inhibit cytochrome activity and enhance caspase 3 expression in HUVECs, as a result, enhance apoptosis of HUVECs. HSYA could significantly reduce the result induced by AngII in dose-dependent manner (P < 0.05 or P < 0.01). CONCLUSION: HSYA can eliminate the effect of Ang II and its mechanism may be related to inhibiting ROS producing, keeping mitochondrial structure and function and inhibiting apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carthamus/química , Chalcona/análogos & derivados , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Quinonas/farmacologia , Angiotensina II/efeitos adversos , Western Blotting , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalcona/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Life (Basel) ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37511836

RESUMO

K+ channels of the Shaker family have been shown to play crucial roles in K+ uptake and transport. Cotton (Gossypium hirsutum) is an important cash crop. In this study, the 24 Shaker family genes were identified in cotton. Phylogenetic analysis suggests that they were assigned to five clusters. Additionally, their chromosomal location, conserved motifs and gene structure were analyzed. The promoter of cotton Shaker K+ channel genes comprises drought-, low-temperature-, phytohormone-response elements, etc. As indicated by qRT-PCR (quantitative real-time PCR), cotton Shaker K+ channel genes responded to low K+ and NaCl, and especially dehydration stress, at the transcript level. Moreover, one of the Shaker K+ channel genes, GhKAT1aD, was characterized. This gene is localized in the plasma membrane and is predicted to contain six transmembrane segments. It restored the growth of the yeast mutant strain defective in K+ uptake, and silencing GhKAT1a via VIGS (virus-induced gene silencing) resulted in more severe symptoms of K+ deficiency in cotton leaves as well as a lower net K+ uptake rate. The results of this study showed the overall picture of the cotton Shaker K+ channel family regarding bioinformatics as well as the function of one of its members, which provide clues for future investigations of cotton K+ transport and molecular insights for breeding K+-efficient cotton varieties.

20.
J Cancer Res Clin Oncol ; 149(16): 14965-14982, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37606761

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a common leukemia with low cure rate and poor prognosis among pediatric patients. The regulation of AML immune microenvironment and methylation remains to be explored. Pediatric and adult AML patients differ significantly in epigenetic factors, and the efficiency of treatment modalities varies between the two groups of patients. METHODS: We collected mRNA, miRNA and DNA methylation data from pediatric AML patients across multiple databases. Differentially expression genes were identified, and a gene-miRNA regulatory network was constructed. Prognostic risk models were established by integrating LASSO and Cox regression, and a nomogram was generated. Based on this model, we investigated tumor-infiltrating immune cells and cell communication, analyzing the biological functions and pathways associated with prognostic factors. Furthermore, the relationships between all prognostic factors and gene modules were explored, and the impact of these factors on treatment modalities was determined. RESULTS: We developed an efficient prognostic risk model and identified HOXA9, SORT1, SH3BP5, mir-224 and mir-335 as biomarkers. We validated these findings in an external dataset and observed a correlation between age and risk in pediatric patients. AML samples with lower risk scores have a better prognosis and higher expression of immune-upregulated biomarkers, and have lower immune scores. Furthermore, we detected discrepancies in immune cell infiltration and interactions between high- and low-risk group samples, which affected the efficacy of immunotherapy. We evaluated all prognostic factors and predicted the effect of immunotherapy and medicine. CONCLUSION: This study comprehensively investigated the role of methylation signature genes in pediatric AML at the level of genomes and transcriptomes. The research aims to enhance the risk stratification, prognosis evaluation and assessment of treatment effectiveness of AML patients. This study also highlight the uniqueness of pediatric AML and foster the development of new immunotherapy and targeted therapy strategies.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Adulto , Humanos , Criança , Processamento de Proteína Pós-Traducional , MicroRNAs/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Biomarcadores , Prognóstico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa