Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Fish Shellfish Immunol ; 132: 108497, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36539167

RESUMO

The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon ß promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.


Assuntos
Antivirais , Quinase I-kappa B , Animais , Humanos , Quinase I-kappa B/genética , Filogenia , Imunidade Inata/genética , Transdução de Sinais , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
Opt Express ; 30(7): 10280-10292, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35472999

RESUMO

Considering the crystal momenta of the entire k-space, we demonstrate that constructive intra-cycle interference of electrons enhances the high-order harmonic generation (HHG) of a GaN crystal from dominant interband Bloch oscillations. This results in a higher plateau of the HHG spectrum at a driven yield strength below the Bloch field strength. This phenomenon is confirmed in both the two-band and three-band models. Using two-color laser fields, the constructive or destructive interference of interband Bloch oscillations can be tuned. Our findings reveal the essential impact of intra-cycle interference in the full k-space on the HHG in solids.

3.
Fish Shellfish Immunol ; 124: 490-496, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35487402

RESUMO

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are a class of pattern recognition receptors located in the cytoplasm that play a key role in antiviral innate immunity in animals. However, few studies have been conducted on the function of RLR proteins in invertebrates. In this study, the complete coding sequence of the RLR gene of the Zhikong scallop, Chlamys farreri, was obtained and named CfRLR1 with an aim to study the response of CfRLR1 to polyinosinic:polycytidylic acid [poly (I:C)] stimulation and the interaction between the CfRLR1 and C. farreri mitochondrial antiviral signaling (MAVS) protein. Sequence analysis revealed that CfRLR1 encodes 1161 amino acids, and the encoded protein covers two tandem caspase activation and recruitment domains (CARDs), a helicase domain, and a C-terminal regulatory domain. Phylogenetic analysis revealed that CfRLR1 belongs to the RLR family of mollusks. Quantitative real-time polymerase chain reaction showed that CfRLR1 mRNA was expressed in all tested tissues, with its highest expression observed in feet and gill tissues. Furthermore, CfRLR1 expression in the gill tissues was significantly induced after the poly (I:C) challenge. Finally, the results of co-immunoprecipitation and yeast two-hybrid assays revealed that CfRLR1 can bind to the CfMAVS protein via CARD-CARD interactions. Overall, our results elucidate the immune function of invertebrate RLR proteins and provide valuable information on viral disease control for scallop farming.


Assuntos
Pectinidae , Animais , Antivirais/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Imunidade Inata/genética , Filogenia , Poli I-C/farmacologia , Proteínas/genética
4.
Fish Shellfish Immunol ; 128: 238-245, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940537

RESUMO

The LGP2 (Laboratory of Genetics and Physiology 2) protein is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLRs) family, which is a class of antiviral pattern recognition receptors located in the cytoplasm. However, few studies have investigated the function of LGP2 in invertebrates. In this study, the complete coding sequence of the LGP2 gene of the Pacific oyster, Crassostrea gigas, was obtained and named CgLGP2-like. Sequence analysis revealed that CgLGP2-like encodes 803 amino acids, and the encoded protein contains a DEXDc, HELICc, and C-terminal regulatory domains. Multiple sequence alignment demonstrated that the sequences of these key protein functional domains were relatively conserved. Phylogenetic analysis revealed that CgLGP2-like was a new member of the animal LGP2 family. Quantitative real-time PCR results showed that CgLGP2-like mRNA was expressed in all tested oyster tissues, with the highest expression observed in the labial palpus and digestive glands. CgLGP2-like expression in gill tissues was significantly induced after the poly(I:C) challenge. Furthermore, multiple IRF and NF-κB binding sites were identified in the CgLGP2-like promoter region, which may be one of the reasons why CgLGP2-like responds to poly(I:C) stimulation. Finally, the results of dual-luciferase reporter gene assays revealed that overexpression of CgLGP2-like may have a regulatory effect on the human IFN, AP-1, and oyster CgIL-17 genes in HEK293T cells. Overall, our results preliminarily elucidate the immune functions of invertebrate LGP2 protein and provide valuable information for the development of comparative immunology.


Assuntos
Crassostrea , RNA Helicases/genética , Aminoácidos/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Luciferases/metabolismo , NF-kappa B/metabolismo , Filogenia , Poli I-C/farmacologia , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão/genética , Fator de Transcrição AP-1/genética , Tretinoína/metabolismo
5.
Fish Shellfish Immunol ; 123: 290-297, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306177

RESUMO

Nonylphenol (NP) is an endocrine disruptor and environmental hormone representing alkylphenol compounds. Marine mollusks are an important source of protein for people worldwide. Many researchers have begun to study the effect of NP on marine mollusks immune system in view of its toxicity; however, the underlying molecular mechanisms require in-depth analysis. In this study, we focused on the transcriptional expression change of immune-related genes and antioxidant enzymes activities variation after NP exposure in a marine bivalve mollusk, Chlamys farreri, to explore the immunomodulatory capacity of NP in marine mollusks. We identified MAVS (Mitochondrial antiviral signaling protein), a key adaptor molecule in the RLR (RIG-I like receptor) pathway, and studied the expression of multiple immune-related genes in response to different concentrations of NP. The key genes involved in RLR/TLR (Toll like receptor) innate immune pathway, apoptosis, and cellular antioxidation mechanism were investigated. Changes in the enzymatic activities of scallop antioxidant enzymes after NP exposure were also examined. The results revealed that the genes expression and the antioxidant enzymes activities show significant changes, thus proving that NP stimulation affects the scallop immune system. Our research results demonstrate the immunomodulatory capacity of NP in marine bivalve mollusks and lay the foundation for further in-depth analysis of the molecular mechanism of NP toxicity.


Assuntos
Antioxidantes , Pectinidae , Animais , Sistema Imunitário , Imunidade Inata/genética , Pectinidae/genética , Fenóis/toxicidade
6.
Opt Express ; 29(4): 4830-4841, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726030

RESUMO

The enhancement of even-order harmonics near the cut-off of high-order harmonic spectra from monolayer MoS2 has been experimentally observed recently by several groups. Here we demonstrate that this enhancement can be interpreted as a result of spectral interference between half-cycles with opposite polarity by adopting a fully quantum mechanical calculation. We found that, due to the energy modulation induced by Berry connections, only half-cycles with the same polarity can generate high-order harmonics near the cut-off frequency, thus the lack of destructive interference leads to the enhanced intensity of the corresponding even-order harmonics. The explanation is supported by the frequency shift of the measured harmonic peaks. Our finding revealed the role of inter-half-cycle interference in high-harmonic generation (HHG) from non-centrosymmetric materials.

7.
Opt Express ; 26(9): 11678-11684, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716086

RESUMO

We report a concise yet efficient experiment to extend the study of full Poincaré beams to incorporate the nonlinear optical effect. The main feature of our scheme is the employment of Type-II phase-matching KTP crystal to implement the second harmonic generation with structured vector light from invisible to visible region. Of particular interest is the revelation and visualization of the hidden topological structures transferred from the input polarization state to the output observable intensity patterns. The experimental results are in good agreement with the numerical simulations. Our present work provides us with the insight into the interaction of full Poincaré beams with media in the nonlinear regime.

8.
Genome Biol ; 25(1): 102, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641822

RESUMO

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , Cromatina , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Front Immunol ; 13: 1091419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713402

RESUMO

Inhibitor of κB kinase (IKK) family proteins are key signaling molecules in the animal innate immune system and are considered master regulators of inflammation and innate immunity that act by controlling the activation of transcription factors such as NF-κB. However, few functional studies on IKK in invertebrates have been conducted, especially in marine mollusks. In this study, we cloned the IKK gene in the Zhikong scallop Chlamys farreri and named it CfIKK3. CfIKK3 encodes a 773-amino acid-long protein, and phylogenetic analysis showed that CfIKK3 belongs to the invertebrate TBK1/IKKϵ protein family. Quantitative real-time PCR analysis showed that CfIKK3 mRNA is ubiquitously expressed in all tested scallop tissues. The expression of CfIKK3 transcripts was significantly induced after challenge with lipopolysaccharide, peptidoglycan, or poly(I:C). Co-immunoprecipitation (co-IP) assays confirmed the direct interaction of CfIKK3 with MyD88 (the key adaptor in the TLR pathway) and MAVS (the key adaptor in the RLR pathway), suggesting that this IKK protein plays a crucial role in scallop innate immune signal transduction. In addition, the CfIKK3 protein formed homodimers and bound to CfIKK2, which may be a key step in the activation of its own and downstream transcription factors. Finally, in HEK293T cells, dual-luciferase reporter gene experiments showed that overexpression of CfIKK3 protein activated the NF-κB reporter gene in a dose-dependent manner. In conclusion, our experimental results confirmed that CfIKK3 could respond to PAMPs challenge and participate in scallop TLR and RLR pathway signaling, ultimately activating NF-κB. Therefore, as a key signaling molecule and modulator of immune activity, CfIKK3 plays an important role in the innate immune system of scallops.


Assuntos
Quinase I-kappa B , Pectinidae , Humanos , Animais , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Sequência de Aminoácidos , Filogenia , Células HEK293 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata/genética , Pectinidae/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Int J Biol Macromol ; 222(Pt A): 1250-1263, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191792

RESUMO

The interferon regulatory factor (IRF) family comprises transcription factors that are crucial in immune defense, stress response, reproduction, and development. However, the function of IRFs in invertebrates is unclear. Here, the full-length cDNA of an IRF-encoding gene (CfIRF1) in the Zhikong scallop (Chlamys farreri) comprising 2007 bp with an open reading frame of 1053 bp that encoded 350 amino acids was characterized, and its immune function was studied. The CfIRF1 protein contained a typical IRF domain at its N-terminus. CfIRF1 was clustered with other proteins of the IRF1 subfamily, implying that they were closely related. CfIRF1 mRNA transcripts could be detected in all tested scallop tissues, with the highest expression observed in the gills and hepatopancreas. CfIRF1 expression was significantly induced by the polyinosinic-polycytidylic acid and acute viral necrosis virus challenge. CfIRF1 could directly interact with myeloid differentiation primary response protein 88 (MyD88), the key adaptor molecule of the toll-like receptor signaling pathway. CfIRF1 did not interact with scallop IKK1 (IKKα/ß family protein), IKK2, IKK3 (IKKε/TBK1 family protein), or with other IRF family proteins (IRF2 or IRF3). However, CfIRF1 interacted with itself to form a homodimer. CfIRF1 could specifically activate the interferon ß promoter of mammals and the promoter containing the interferon-stimulated response element (ISRE) in a dose-dependent manner. The truncated form of CfIRF1 had a significantly reduced ISRE activation ability, indicating that structural integrity was crucial for CfIRF1 to function as a transcription factor. Our findings provide insights into the functions of mollusk IRFs in innate immunity. The research results also provide valuable information that enriches the theory of comparative immunology and that can help prevent diseases in scallop farming.


Assuntos
Antivirais , Pectinidae , Animais , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Antivirais/metabolismo , Pectinidae/genética , Imunidade Inata/genética , Poli I-C/farmacologia , Mamíferos/metabolismo
11.
Front Immunol ; 13: 869845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422814

RESUMO

IKK proteins are key signaling molecules in the innate immune system of animals, and act downstream of pattern recognition receptors. However, research on IKKs in invertebrates, especially marine mollusks, remains scarce. In this study, we cloned CfIKK1 gene from the Zhikong scallop (Chlamys farreri) and studied its function and the signaling it mediates. The open reading frame of CfIKK1 was 2190 bp and encoded 729 amino acids. Phylogenetic analysis showed that CfIKK1 belonged to the invertebrate IKKα/IKKß family. Quantitative real-time PCR analysis revealed the ubiquitous expression of CfIKK1 mRNA in all scallop tissues and challenge with lipopolysaccharide, peptidoglycan, or poly(I:C) significantly upregulated the expression of CfIKK1. Co-immunoprecipitation assays confirmed the interaction of CfIKK1 with scallop MyD88 (Myeloid differentiation actor 88, the key adaptor of the TLR signaling pathway) via its N-terminal kinase domain. Additionally, CfIKK1 protein could form homodimers and even oligomers, with N-terminal kinase domain and C-terminal scaffold dimerization domain playing key roles in this process. Finally, the results of RNAi experiments showed that when the scallop IKK1 gene was suppressed, the expression of IRF genes also decreased significantly. In conclusion, CfIKK1 could respond to PAMPs challenge and interact with MyD88 protein of scallop TLR signaling, with the formation of CfIKK1 dimers or oligomers. At the same time, the results of RNAi experiments revealed the close regulatory relationship between IKK1 and IRF genes of scallop. Therefore, as a key signal transduction molecule and immune activity regulator, CfIKK1 plays important roles in the innate immune system of scallops.


Assuntos
Quinase I-kappa B , Pectinidae , Animais , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Pectinidae/genética , Filogenia , Transdução de Sinais/genética , Receptores Toll-Like/metabolismo
12.
ACS Chem Biol ; 13(3): 500-505, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29309732

RESUMO

Bacillus velezensis has been investigated and applied more and more widely recently because it can inhibit fungi and bacteria and become a potential biocontrol agent. In order to provide more clear and comprehensive understanding of B. velezensis for researchers, we collected the recent relevant articles systematically and reviewed the discovery and taxonomy, secondary metabolites, characteristics and application, gene function, and molecular research of B. velezensis. This review will give some direction to the research and application of this strain for the future.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Biodegradação Ambiental , Pesquisa/tendências
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa