RESUMO
Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li+ conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li+ behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li+ conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li+ conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co-O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li+ disassociation and enhances its transference number (tLi+). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm-1 and tLi+ of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium-sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.
RESUMO
Improving the slow redox kinetics of sulfur species and shuttling issues of soluble intermediates induced from the multiphase sulfur redox reactions are crucial factors for developing the next-generation high-energy-density lithium-sulfur (Li-S) batteries. In this study, we successfully constructed a novel molecular electrocatalyst through in situ polymerization of bis(3,4-dibromobenzene)-18-crown-6 (BD18C6) with polysulfide anions on the cathode interface. The crown ether (CE)-based polymer acts as a spatial "fence" to precisely control the unique redox characteristics of sulfur species, which could confine sulfur substance within its interior and interact with lithium polysulfides (LiPSs) to optimize the reaction barrier of sulfur species. The "fence" structure and the double-sided Li+ penetrability of the CE molecule may also prevent the CE catalytic sites from being covered by sulfur during cycling. This new fence-type electrocatalyst mitigates the "shuttle effect", enhances the redox activity of sulfur species, and promotes the formation of three-dimensional stacked lithium sulfide (Li2S) simultaneously. It thus enables lithium-sulfur batteries to exhibit superior rate performance and cycle stability, which may also inspire development facing analogous multiphase electrochemical energy-efficient conversion process.
RESUMO
Rational regulation on polysulfide behaviors is of great significance in pursuit of reliable solution-based lithium-sulfur (Li-S) battery chemistry. Herein, we develop a unique polymeric zwitterion (PZI) to establish a smart polysulfide regulation in Li-S batteries. The zwitterionic nature of PZI integrates sulfophilicity and lithiophilicity in the matrix, fostering an ionic environment for selective ion transfer through the chemical interactions with lithium polysulfides (LiPS). When implemented as a functional interlayer in the cell configuration, PZI empowers strong obstruction against polysulfide permeation but simultaneously allows fast Li+ conduction, thus contributing to significant shuttle inhibition as well as the resultant facile and stable sulfur electrochemistry. The PZI-based cells realize excellent cyclability over 1000 cycles with a minimum capacity fading rate of 0.012% per cycle and favorable rate capability up to 5 C. Moreover, a high areal capacity retention of 5.3 mAh cm-2 after 300 cycles can be also obtained under raised sulfur loading and limited electrolyte, demonstrating great promise in developing high-efficiency and long-lasting Li-S batteries.
RESUMO
Metal-metal batteries such as the 3 V Cu-Al system are highly desirable for large-scale energy storage owing to their low cost and excellent scalability of Cu and Al foils. However, the dissolved Cu cations will crossover from the cathode to the anode leading to poor electrochemical performance. In this work, it is demonstrated that the reversibility of the Cu-Al battery depends strongly on the interaction of the Cu ions with the electrolyte solvent and subsequently the affinity of the solvated Cu ion with the membrane separator. Specifically, a series of common carbonate-based electrolyte solvents are investigated via molecular dynamics and contact angle measurements to understand the interaction between the solvents and a polypropylene (PP) membrane, as well as that between cations and solvent. Among different solvents, fluoroethylene carbonate (FEC) is shown to drastically enhance the coulombic efficiency to 97%, compared to that of 27% with dimethyl carbonate. Remarkable cyclability of a 3 V Cu-Al battery with 3 m LiTFSI FEC and PP membrane up to 1000 cycles is further demonstrated. This finding opens new opportunities for the development of low-cost, high performance Cu-Al systems for stationary applications.
RESUMO
The development of high-energy-density Li metal batteries are hindered by electrolyte consumption and uneven lithium deposition due to the unstable lithium-electrolyte interface (SEI). In this work, tetraglyme is introduced into ester electrolyte to regulate the Li+ -solvation structures for stable SEI while remaining appropriate voltage window for high-voltage cathodes. In the modified solvation structures, an enhanced lowest unoccupied molecular orbital energy level occurs, resulting in relieved electrolyte degradation. In addition, the modified solvation structures can facilitate adequate LiNO3 dissolution in the ester electrolyte (denoted as E-LiNO3 ), contributing to constant supplement of constructing highly conductive LiNx Oy -containing SEI for dendrite-free Li deposition under high capacity condition. As a result, the Li||Cu cell-based on this electrolyte exhibits high Li plating/stripping Coulombic efficiency of 98.2% over 350 cycles. Furthermore, when paired with high-voltage LiNi0.5 Co0.2 Mn0.3 O2 cathodes, the E-LiNO3 enables a stable cycling with a high-energy-density of 296 Wh kg-1 based on the full cell under realistic testing conditions (lean electrolyte of 3 g Ah-1 , limited Li excess of 2.45-fold, and high areal capacity of 4 mAh cm-2 ).
RESUMO
Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.
RESUMO
Emerging as a new frontier in heterogeneous catalysis, single-atom site catalysts (SSCs) have sparked enormous attention and bring about new opportunities to oxygen reduction electrocatalysis. Despite considerable progress achieved recently, most of the reported SSCs suffer from either insufficient activity or unsatisfactory stability, which severely retards their practical application. Here, we demonstrate a novel Ru-SSC with appropriate adsorption free energy of OH* (ΔGOH*) to confer excellent activity and low Fenton reactivity to maintain long-term stability. The as-developed Ru-SSC exhibits encouraging oxygen reduction reaction turnover frequency of 4.99 e- s-1 sites-1, far exceeding the state-of-the-art Fe-SSC counterpart (0.816 e- s-1 sites-1), as a result of Ru energy level regulation via spontaneous OH binding. Furthermore, Ru-SSC exhibits greatly suppressed Fenton reactivity, with restrained generation of reactive oxygen species directly observed, thus endowing the Ru-SSC with much more superior stability (only 17 mV negative shift after 20â¯000 cycles) than the Fe-SSC counterpart (31 mV). The practical application of Ru-SSC is further validated by its excellent activity and stability in a real fuel cell device.
RESUMO
Flexible Zn-air batteries have recently emerged as one of the key energy storage systems of wearable/portable electronic devices, drawing enormous attention due to the high theoretical energy density, flat working voltage, low cost, and excellent safety. However, the majority of the previously reported flexible Zn-air batteries encounter problems such as sluggish oxygen reaction kinetics, inferior long-term durability, and poor flexibility induced by the rigid nature of the air cathode, all of which severely hinder their practical applications. Herein, a defect-enriched nitrogen doped-graphene quantum dots (N-GQDs) engineered 3D NiCo2 S4 nanoarray is developed by a facile chemical sulfuration and subsequent electrophoretic deposition process. The as-fabricated N-GQDs/NiCo2 S4 nanoarray grown on carbon cloth as a flexible air cathode exhibits superior electrocatalytic activities toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), outstanding cycle stability (200 h at 20 mA cm-2 ), and excellent mechanical flexibility (without observable decay under various bending angles). These impressive enhancements in electrocatalytic performance are mainly attributed to bifunctional active sites within the N-GQDs/NiCo2 S4 catalyst and synergistic coupling effects between N-GQDs and NiCo2 S4 . Density functional theory analysis further reveals that stronger OOH* dissociation adsorption at the interface between N-GQDs and NiCo2 S4 lowers the overpotential of both ORR and OER.
RESUMO
Combining the advantages of homogeneous and heterogeneous catalysts, single-atom catalysts (SACs) are bringing new opportunities to revolutionize ORR catalysis in terms of cost, activity and durability. However, the lack of high-performance SACs as well as the fundamental understanding of their unique catalytic mechanisms call for serious advances in this field. Herein, for the first time, we develop an Ir-N-C single-atom catalyst (Ir-SAC) which mimics homogeneous iridium porphyrins for high-efficiency ORR catalysis. In accordance with theoretical predictions, the as-developed Ir-SAC exhibits orders of magnitude higher ORR activity than iridium nanoparticles with a record-high turnover frequency (TOF) of 24.3â e- site-1 s-1 at 0.85â V vs. RHE) and an impressive mass activity of 12.2â A mg-1 Ir , which far outperforms the previously reported SACs and commercial Pt/C. Atomic structural characterizations and density functional theory calculations reveal that the high activity of Ir-SAC is attributed to the moderate adsorption energy of reaction intermediates on the mononuclear iridium ion coordinated with four nitrogen atom sites.
RESUMO
Rational design of cathode hosts with high electrical conductivity and strong sulfur confinement is a great need for high-performance lithium-sulfur batteries. Herein, we report a self-standing, hybrid-nanostructured cathode host comprised of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) for the significant improvement of both the electrode cyclability and energy density. The strong coupling of the intertwined CNTs and strung porous carbon polyhedrons as a binder-free thin film significantly enhances the long-range electronic conductivity and provides abundant active interfaces as well as robust electrode integrity for sulfur electrochemistry. Attributed to the synergistic combination of the CNTs and carbon polyhedrons, the obtained sulfur electrodes exhibit outstanding cyclability, an excellent high-rate response up to 10 C, and an ultra-high volumetric capacity of 960â Ah L-1 .
RESUMO
Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2 EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187â mAh g(-1) after 300 cycles at 1 C and good rate capabilities up to 20 C.
RESUMO
Undercoordination chemistry is an effective strategy to modulate the geometry-governed electronic structure and thereby regulate the activity of sulfur electrocatalysts. Efficient sulfur electrocatalysis is requisite to overcome the sluggish kinetics in lithium-sulfur (Li-S) batteries aroused by multi-electron transfer and multi-phase conversions. Recent advances unveil the great promise of undercoordination chemistry in facilitating and stabilizing sulfur electrochemistry, yet a related review with systematicness and perspectives is still missing. Herein, it is carefully combed through the recent progress of undercoordination chemistry in sulfur electrocatalysis. The typical material structures and operational strategies are elaborated, while the underlying working mechanism is also detailly introduced and generalized into polysulfide adsorption behaviors, polysulfide conversion kinetics, electron/ion transport, and dynamic reconstruction. Moreover, perspectives on the future development of undercoordination chemistry are further proposed.
RESUMO
The sluggish kinetics of sulfur conversions have long been hindering the implementation of fast and efficient sulfur electrochemistry in lithium-sulfur (Li-S) batteries. In this regard, herein the unique chromium boride (CrB) is developed via a well-confined mild-temperature thermal reaction to serve as an advanced sulfur electrocatalyst. Its interstitial-alloy nature features excellent conductivity, while the nano-lamination architecture affords abundant active sites for host-guest interactions. More importantly, the CrB nanocatalyst demonstrates a dual sulphophilicity with simultaneous CrâS and BâS bondage for establishing strong interactions with the intermediate polysulfides. As a result, significant stabilization and promotion of sulfur redox behavior can be achieved, enabling an excellent Li-S cell cyclability with a minimum capacity fading rate of 0.0176% per cycle over 2000 cycles and a favorable rate capability up to 7 C. Additionally, a high areal capacity of 5.2 mAh cm-2 , and decent cycling and rate performances are still attainable under high sulfur loading and low electrolyte dosage. This work offers a facile approach and instructive insights into metal boride sulfur electrocatalyst, holding a good promise for pursuing high-efficiency sulfur electrochemistry and high-performance Li-S batteries.
RESUMO
The construction of robust (quasi)-solid-state electrolyte (SSE) for flexible lithium-metal batteries is desirable but extremely challenging. Herein, a novel, flexible, and robust quasi-solid-state electrolyte (QSSE) with a "tree-trunk" design is reported for ultralong-life lithium-metal batteries (LMBs). An in-situ-grown metal-organic framework (MOF) layer covers the cellulose-based framework to form hierarchical ion-channels, enabling rapid ionic transfer kinetics and excellent durability. A conductivity of 1.36 × 10-3 S cm-1 , a transference number of 0.72, an electrochemical window of 5.26 V, and a good rate performance are achieved. The flexible LMBs fabricated with as-designed QSSEs deliver areal capacity of up to 3.1 mAh cm-2 at the initial cycle with high mass loading of 14.8 mg cm-2 in Li-NCM811 cells and can retain ≈80% capacity retention after 300 cycles. An ultralong-life of 3000 cycles (6000 h) is also achieved in Li-LiFePO4 cells. This work presents a promising route in constructing a flexible QSSE toward ultralong-life LMBs, and also provides a design rationale for material and structure development in the area of energy storage and conversion.
RESUMO
The in situ growth of active materials on 3D current collectors (such as Ni foams) presents facile and efficient access to high-performance supercapacitors. However, the low surface area of current collectors limits the mass loading, microstructure, and capacitive performance of active materials thereon. Herein, we develop a novel surface modification with hierarchical N-rich carbon nanosheets on Ni foams via a simple sol-gel method. At the same time, its favorable effects on mass loading and utilization are demonstrated using NiCoMn-carbonate hydroxide (NCM) as a model active material. Specifically, the carbon modification greatly boosts the current collector's specific surface area and enables the growth of dense NCM nanoneedles with controllable mass loading ranging from 5.2 to 23.1 mg cm-2. Meanwhile, the correlation between mass loading and utilization is systematically studied, which shows the well-maintained energy storage efficiency due to the conducive surface modification. As a result, excellent performance with the ultrahigh area-specific capacity of 19.36 F cm-2 at 2 mA cm-2 in the three-electrode configuration and remarkable area-specific energy density of 1352 µW h cm-2 in the solid-state asymmetric device can be achieved, demonstrating a prospective pathway toward facile and effective current collector designs for high-energy/power-density supercapacitors.
RESUMO
Lithium-sulfur (Li-S) batteries have attracted much attention attributed to their high theoretical energy density, whereas the parasitic shuttling behavior of lithium polysulfides (LiPS) hinders this technology from yielding practically competitive performance. Targeting this critical challenge, we develop an advanced polysulfide barrier by modifying the conventional separator with CNTs-interspersed V2C/V2O5 nanosheets to alleviate the shuttle effect. The partial oxidization of V2C MXene constructs the V2C/V2O5 composite with V2O5 nanoparticles uniformly dispersed on few-layered V2C nanosheets, which synergistically and concurrently improves the sulfur confinement and redox reaction kinetics. Moreover, the interstacking between the 1D CNTs and the 2D V2C/V2O5 not only prevents the agglomeration of nanosheets for efficient exposure of active interfaces but also constructs a robust conductive network for fast charge and mass transfers. The Li-S cells with V2C/V2O5/CNTs-modified separator realize a high initial capacity (1240.4 mAh g-1 at 0.2 C), decent capacity retention (82.6% over 500 cycles), and favorable areal capacity (5.9 mAh cm-2) at a raised sulfur loading (6.0 mg cm-2). This work affords a unique multifunctional separator design toward durable and efficient sulfur electrochemistry, holding great promise for improving the electrochemical properties of Li-S batteries.
RESUMO
Rational construction of sulfur electrodes is essential in pursuit of practically viable lithium-sulfur (Li-S) batteries. Herein, bimetallic NiCo-layered double hydroxide (NiCo-LDH) with a unique hierarchical micro-nano architecture is developed as an advanced sulfur reservoir for Li-S batteries. Compared with the monometallic Co-layered double hydroxide (Co-LDH) counterpart, the bimetallic configuration realizes much enriched, miniaturized, and vertically aligned LDH nanosheets assembled in hollow polyhedral nanoarchitecture, which geometrically benefits the interface exposure for host-guest interactions. Beyond that, the introduction of secondary metal intensifies the chemical interactions between layered double hydroxide (LDH) and sulfur species, which implements strong sulfur immobilization and catalyzation for rapid and durable sulfur electrochemistry. Furthermore, the favorable NiCo-LDH is architecturally upgraded into closely packed micro-nano clusters with facilitated long-range electron/ion conduction and robust structural integrity. Due to these attributes, the corresponding Li-S cells realize excellent cyclability over 800 cycles with a minimum capacity fading of 0.04% per cycle and good rate capability up to 2 C. Moreover, highly reversible areal capacity of 4.3 mAh cm-2 can be achieved under a raised sulfur loading of 5.5 mg cm-2. This work provides not only an effective architectural design but also a deepened understanding on bimetallic LDH sulfur reservoir for high-performance Li-S batteries.
RESUMO
Stable solid electrolyte interface (SEI) is highly sought after for lithium metal batteries (LMB) owing to its efficient electrolyte consumption suppression and Li dendrite growth inhibition. However, current design strategies can hardly endow a multifunctional SEI formation due to the non-uniform, low flexible film formation and limited capability to alter Li nucleation/growth orientation, which results in unconstrained dendrite growth and short cycling stability. Herein, we present a novel strategy to employ electrolyte additives containing catechol and acrylic groups to construct a stable multifunctional SEI by in-situ anionic polymerization. This self-smoothing and robust SEI offers multiple sites for Li adsorption and steric repulsion to constrain nucleation/growth process, leading to homogenized Li nanosphere formation. This isotropic nanosphere offers non-preferred Li growth orientation, rendering uniform Li deposition to achieve a dendrite-free anode. Attributed to these superiorities, a remarkable cycling performance can be obtained, i.e., high current density up to 10 mA cm-2, ultra-long cycle life over 8500 hrs operation, high cumulative capacity over 4.25 Ah cm-2 and stable cycling under 60 °C. A prolonged lifespan can also be achieved in Li-S and Li-LiFePO4 cells under lean electrolyte content, low N/P ratio or high temperature conditions. This facile strategy also promotes the practical application of LMB and enlightens the SEI design in related fields.
RESUMO
The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPSs) represent the main obstructions to the practical application of lithium-sulfur (Li-S) batteries. Herein, an anion-deficient design of antimony selenide (Sb2 Se3- x ) is developed to establish a multifunctional LiPS barrier toward the inhibition of polysulfide shuttling and enhancement of battery performance. The defect chemistry in the as-developed Sb2 Se3- x promotes the intrinsic conductivity, strengthens the chemical affinity to LiPSs, and catalyzes the sulfur electrochemical conversion, which are verified by a series of computational and experimental results. Attributed to these unique superiorities, the obtained LiPS barrier efficiently promotes and stabilizes the sulfur electrochemistry, thus enabling excellent Li-S battery performance, e.g., outstanding cyclability over 500 cycles at 1.0 C with a minimum capacity fading rate of 0.027% per cycle, a superb rate capability up to 8.0 C, and a high areal capacity of 7.46 mAh cm-2 under raised sulfur loading. This work offers a defect engineering strategy toward fast and durable sulfur electrochemistry, holding great promise in developing practically viable Li-S batteries as well as enlightening the material design of related energy storage and conversion systems.