Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Imaging ; 2021: 9996125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381316

RESUMO

Background: Inducible nitric oxide synthase (iNOS) plays a crucial role in neuroinflammation, especially microglial activity, and may potentially represent a useful biomarker of neuroinflammation. In this study, we carefully defined a strategic plan to develop iNOS-targeted molecular PET imaging using (4'-amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-fluorophenyl)methanone ([18F]FBAT) as a tracer in a mouse model of lipopolysaccharide- (LPS-) induced brain inflammation. Methods: An in vitro model, murine microglial BV2 cell line, was used to assess the uptake of [18F]FBAT in response to iNOS induction at the cellular level. In vivo whole-body dynamic PET/MR imaging was acquired in LPS-treated (5 mg/kg) and control mice. Standard uptake value (SUV), total volume of distribution (V t), and area under the curve (AUC) based on the [18F]FBAT PET signals were determined. The expression of iNOS was confirmed by immunohistochemistry (IHC) of brain tissues. Results: At the end of synthesis, the yield of [18F]FBAT was 2.2-3.1% (EOS), radiochemical purity was >99%, and molar radioactivity was 125-137 GBq/µmol. In vitro, [18F]FBAT rapidly and progressively accumulated in murine microglial BV2 cells exposed to LPS; however, [18F]FBAT accumulation was inhibited by aminoguanidine, a selective iNOS inhibitor. In vivo biodistribution studies of [18F]FBAT showed a significant increase in the liver and kidney on LPS-treated mice. At 3 h postinjection of LPS, in vivo, the [18F]FBAT accumulation ratios at 30 min post intravenous (i.v.) radiotracer injection for the whole brain, cortex, cerebellum, and brainstem were 2.16 ± 0.18, 1.53 ± 0.25, 1.41 ± 0.21, and 1.90 ± 0.12, respectively, compared to those of mice not injected with LPS. The mean area under the curve (AUC0-30min), total volume of distribution (V t, mL/cm3), and K i (influx rate) of [18F]FBAT were 1.9 ± 0.21- and 1.4 ± 0.22-fold higher in the 3 h LPS group, respectively, than in the control group. In the pharmacokinetic two-compartment model, the whole brain K i of [18F]FBAT was significantly higher in mice injected with LPS compared to the control group. Aminoguanidine, selective iNOS inhibitor, pretreatment significantly reduced the AUC0-30min and V t values in LPS-induced mice. Quantitative analysis of immunohistochemically stained brain sections confirmed iNOS was preferentially upregulated in the cerebellum and cortex of mice injected with LPS. Conclusion: An automated robotic method was established for radiosynthesis of [18F]FBAT, and the preliminary in vitro and in vivo results demonstrated the feasibility of detecting iNOS activity/expression in LPS-treated neuroinflammation by noninvasive imaging with [18F]FBAT PET/MRI.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Piperidinas , Distribuição Tecidual
2.
Bioorg Med Chem Lett ; 27(15): 3460-3463, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28619538

RESUMO

Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole ([18F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [18F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [18F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35GBq/µmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [18F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer.


Assuntos
Benzotiazóis/química , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Benzotiazóis/farmacocinética , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/farmacocinética , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa