Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703968

RESUMO

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Assuntos
Clostridium butyricum , Genoma Bacteriano , Filogenia , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Sequenciamento Completo do Genoma , Bacteriocinas/genética , Bacteriocinas/biossíntese , Microbiologia Industrial , Toxinas Botulínicas/genética , Fatores de Virulência/genética
2.
BMC Genomics ; 25(1): 61, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225545

RESUMO

BACKGROUND: Sweetpotato is a typical ''potassium (K+) favoring'' food crop, which root differentiation process needs a large supply of potassium fertilizer and determine the final root yield. To further understand the regulatory network of the response to low potassium stress, here we analyze physiological and biochemical characteristics, and investigated root transcriptional changes in two sweetpotato genotypes, namely, - K tolerant "Xu32" and - K susceptible"NZ1". RESULT: We found Xu32 had the higher capability of K+ absorption than NZ1 with better growth performance, higher net photosynthetic rate and higher chlorophyll contents under low potassium stress, and identified 889 differentially expressed genes (DEGs) in Xu32, 634 DEGs in NZ1, 256 common DEGs in both Xu32 and NZ1. The Gene Ontology (GO) term in molecular function enrichment analysis revealed that the DEGs under low K+ stress are predominately involved in catalytic activity, binding, transporter activity and antioxidant activity. Moreover, the more numbers of identified DEGs in Xu32 than that in NZ1 responded to K+-deficiency belong to the process of photosynthesis, carbohydrate metabolism, ion transport, hormone signaling, stress-related and antioxidant system may result in different ability to K+-deficiency tolerance. The unique genes in Xu32 may make a great contribution to enhance low K+ tolerance, and provide useful information for the molecular regulation mechanism of K+-deficiency tolerance in sweetpotato. CONCLUSIONS: The common and distinct expression pattern between the two sweetpotato genotypes illuminate a complex mechanism response to low potassium exist in sweetpotato. The study provides some candidate genes, which can be used in sweetpotato breeding program for improving low potassium stress tolerance.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Potássio/metabolismo , Fotossíntese/genética , Transcriptoma , Estresse Fisiológico/genética
3.
Biol Reprod ; 110(5): 877-894, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38236177

RESUMO

The centrosome is critical for maintaining the sperm head-tail connection and the formation of flagellar microtubules. In this study, we found that in mouse testes, CCDC159 (coiled-coil domain-containing protein 159) is specifically localized to the head-tail coupling apparatus (HTCA) of spermatids, a structure that ensures sperm head-tail tight conjunction. CCDC159 contains a C-terminal coiled-coil domain that functions as the centrosomal localization signal. Gene knockout (KO) of Ccdc159 in mice resulted in acephalic spermatozoa, abnormal flagella, and male infertility. To explore the mechanism behind CCDC159 regulating spermatogenesis, we identified CCDC159-binding proteins using a yeast two-hybrid screen and speculated that CCDC159 participates in HTCA assembly by regulating protein phosphatase PP1 activity. Further RNA-sequencing analyses of Ccdc159 KO testes revealed numerous genes involved in male gamete generation that were downregulated. Together, our results show that CCDC159 in spermatids is a novel centrosomal protein anchoring the sperm head to the tail. Considering the limitation of KO mouse model in clarifying the biological function of CCDC159 in spermatogenesis, a gene-rescue experiment will be performed in the future.


Assuntos
Camundongos Knockout , Cabeça do Espermatozoide , Cauda do Espermatozoide , Espermátides , Espermatogênese , Animais , Masculino , Camundongos , Espermátides/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatogênese/fisiologia , Cabeça do Espermatozoide/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Testículo/metabolismo , Centrossomo/metabolismo
4.
J Transl Med ; 22(1): 438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720336

RESUMO

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Assuntos
Aprendizado Profundo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Estudos Retrospectivos , Curva ROC , Adulto
5.
J Transl Med ; 22(1): 132, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310289

RESUMO

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Avaliação Pré-Clínica de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Biópsia Líquida , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genética
6.
Cancer Cell Int ; 24(1): 86, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402174

RESUMO

BACKGROUND: The role of Acyl-CoA dehydrogenase long chain (ACADL) in different tumor types had different inhibiting or promoting effect. However, its role in non-small cell lung cancer (NSCLC) carcinogenicity is not clear. METHOD: In this study, we utilized The Cancer Genome Atlas (TCGA) database to analyze ACADL expression in NSCLC and its correlation with overall survival. Furthermore, we investigated the function of ACADL on cellular proliferation, invasion, colony, apoptosis, cell cycle in vitro with NSCLC cells. Mechanistically, we evaluated the regulatory effect of ACADL expression on its downstream factor yes-associated protein (YAP) by assessing YAP phosphorylation levels and its cellular localization. Finally, we verified the tumorigenic effect of ACADL on NSCLC cells through xenograft experiments in vivo. RESULTS: Compared to adjacent non-cancerous samples, ACADL significantly down-regulated in NSCLC. Overexpression of ACADL, effectively reduced the proliferative, colony, and invasive capabilities of NSCLC cells, while promoting apoptosis and inducing cell cycle arrest. Moreover, ACADL overexpression significantly enhanced YAP phosphorylation and hindered its nuclear translocation. However, the inhibitory effect of the overexpression of ACADL in NSCLC cells mentioned above can be partially counteracted by YAP activator XMU-MP-1 application both in vitro and in vivo. CONCLUSION: The findings suggest that ACADL overexpression could suppress NSCLC development by modulating YAP phosphorylation and limiting its nuclear shift. This role of ACADL-YAP axis provided novel insights into NSCLC carcinogenicity and potential therapeutic strategies.

7.
J Sci Food Agric ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822542

RESUMO

BACKGROUND: The Songhua River Basin, a vital grain-producing area in China, faces challenges due to the uneven distribution of water resources and the intensive water demands of agriculture. To enhance agricultural development and effectively manage water scarcity, it is essential to identify the water-saving potential of major staple crops - corn, wheat, and rice. This study enhances the World Food Studies (WOFOST) model by refining the day of year for the developmental vegetative stage (DVS), thereby improving the representation of phenological stages for spring maize, spring wheat, and rice within the model. This refinement offers a detailed analysis of the potential and rainfed yields. RESULTS: The results from the modified WOFOST model show promising simulation outcomes for the biomass and yield of maize, wheat, and rice, with Nash-Sutcliffe efficiency (NS) and index of agreement (IoA) values all exceeding 0.7. An analysis of photothermal potential yields (Yp) and rainfed yields (Yr) revealed minimal differences in yields for spring maize and rice across various rainfall frequencies. Specifically, the average photothermal utilization rates (LTs) are 93.57% for maize and 85.25% for rice. In contrast, the rainfed yield for wheat is lower than its photothermal yield, with an LT of 43.66%. CONCLUSIONS: These findings suggest that in the Songhua River Basin, maize and rice offer greater potential for water conservation compared to wheat. It is recommended to judiciously reduce irrigation during the growing seasons of spring maize and rice to help alleviate agricultural water use pressures. © 2024 Society of Chemical Industry.

8.
Biochem Biophys Res Commun ; 661: 34-41, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37086572

RESUMO

Physiological activities of the body exhibit an obvious biological rhythm. At the core of the circadian rhythm, BMAL1 is the only clock gene whose deletion leads to abnormal physiological functions. However, whether intermittent heat stress influences cardiovascular function by altering the circadian rhythm of clock genes has not been reported. This study aimed to investigate whether intermittent heat stress induces autophagy and apoptosis, and the effects of BMAL1 on thoracic aortic autophagy and apoptosis. An intermittent heat stress model was established in vitro, and western blotting and immunofluorescence were used to detect the expression of autophagy, apoptosis, the AMPK/mTOR/ULK1 pathway, and BMAL1. After BMAL1 silencing, RT-qPCR was performed to detect the expression levels of autophagy and apoptosis-related genes. Our results suggest that heat stress induces autophagy and apoptosis in RTAECs. In addition, intermittent heat stress increased the phosphorylation of AMPK and ULK1, but reduced the phosphorylation of mTOR, AMPK inhibitor Compound C reversed the phosphorylation of AMPK, mTOR, and ULK1, and Beclin1 and LC3-II/LC3-I were downregulated. Furthermore, BMAL1 expression was elevated in vitro and shBMAL1 decreased autophagy and apoptosis. We revealed that intermittent heat stress induces autophagy and apoptosis, and that BMAL1 may be involved in the occurrence of autophagy and apoptosis.


Assuntos
Fatores de Transcrição ARNTL , Autofagia , Células Endoteliais , Resposta ao Choque Térmico , Animais , Ratos , Aorta Torácica/citologia , Células Endoteliais/citologia , Fatores de Transcrição ARNTL/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Fosforilação , Apoptose , Células Cultivadas
9.
J Transl Med ; 21(1): 887, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062450

RESUMO

BACKGROUND: The role of cholesterol metabolism in gastric cancer (GC) and its implications for tumor characteristics and immunotherapy response remain poorly understood. In this study, our aim was to investigate this role, identify associated metabolic subtypes, and assess their clinical implications in GC. METHODS: We conducted a comprehensive analysis of cholesterol metabolism genes (CMGs) using transcriptomic data from TCGA and GEO. Based on 23 representative CMGs, we classified GC into metabolic subtypes. We evaluated clinical features and immune cell infiltration between these subtypes. Additionally, we identified a CMG signature and assessed its clinical relevance in GC. We retrospectively enrolled thirty-five GC patients receiving chemotherapy plus a PD-1 inhibitor to assess the CMG signature using multiplex immunohistochemistry. RESULTS: Our analysis revealed two cholesterol metabolism subtypes in GC: Cholesterol Metabolism Type 1 (CMT1) and Cholesterol Metabolism Type 2 (CMT2). These subtypes exhibited distinct patterns: CMT1 indicated heightened cholesterol biosynthesis, while CMT2 showed abnormal cholesterol transport. CMT2 was associated with unfavorable clinical features, enriched malignant pathways, and a pro-tumor immune microenvironment. Furthermore, we developed a five-CMG prognostic signature (ABCA1, NR1H3, TSPO, NCEH1, and HMGCR) that effectively predicted the prognosis of patients with GC and their response to chemotherapy plus a PD-1 inhibitor. This signature was validated in a clinical cohort using multiplex immunohistochemistry. CONCLUSION: Our results highlight the effectiveness of cholesterol metabolism patterns as biomarkers for predicting the prognosis and immunotherapy response in GC. The expression of cholesterol metabolism genes and the assessment of cholesterol metabolism patterns have the potential to predict the outcome of immunotherapy and guide treatment strategies.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Inibidores de Checkpoint Imunológico , Imuno-Histoquímica , Estudos Retrospectivos , Colesterol , Prognóstico , Microambiente Tumoral , Receptores de GABA
10.
BMC Gastroenterol ; 23(1): 408, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993767

RESUMO

BACKGROUND: Gastrointestinal Neuroendocrine Neoplasms (GI-NENs) often result in liver metastases, and the role of Primary Tumor Resection (PTR) in managing GI-NENs with liver metastases (GI-NENLM) is still debated. This study aimed to investigate the potential benefits of PTR in treating GI-NENLM by analyzing data from the Surveillance, Epidemiology, and End Results Program (SEER) and the First Affiliated Hospital of Sun Yat-sen University (FAH). METHODS: The SEER Registry 17 database and the FAH clinical pathology database were used to collect clinicopathology data for GI-NENLM diagnosed between 2010 and 2019 and between 2011 and 2022, respectively. Propensity score matching (PSM) was used to match the clinicopathological characteristics of patients from both cohorts. Inverse probability weighting (IPTW) was used to weigh the PTR and non-PTR groups. The primary endpoint was overall survival (OS). RESULTS: After matching, 155 patients from the SEER database were matched to the FAH cohort. PTR was significantly associated with better prognosis in PSM-matched/unmatched SEER cohorts (P < 0.01) and in the FAH cohort even after eliminating selection bias using IPTW (p < 0.01). Subgroup analysis suggests that the cohort consisting of patients aged 55 years or older, individuals with colorectal primary tumors, those at the T1 disease stage, and those without extrahepatic metastasis may potentially benefit from PTR. Interaction analysis showed no significant interaction between PTR and other clinical and pathological factors except for age. CONCLUSION: The employment of PTR in patients with GI-NENLM is significantly correlated with individual survival benefits. We support performing PTR on carefully evaluated patients.


Assuntos
Neoplasias Colorretais , Neoplasias Gastrointestinais , Neoplasias Hepáticas , Tumores Neuroendócrinos , Humanos , Programa de SEER , Prognóstico , Neoplasias Gastrointestinais/patologia , Pontuação de Propensão , Tumores Neuroendócrinos/patologia
11.
Gastric Cancer ; 26(5): 734-742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322381

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) has been recognized as an effective therapeutic option for locally advanced gastric cancer as it is expected to reduce tumor size, increase the resection rate, and improve overall survival. However, for patients who are not responsive to NAC, the best operation timing may be missed together with suffering from side effects. Therefore, it is paramount to differentiate potential respondents from non-respondents. Histopathological images contain rich and complex data that can be exploited to study cancers. We assessed the ability of a novel deep learning (DL)-based biomarker to predict pathological responses from images of hematoxylin and eosin (H&E)-stained tissue. METHODS: In this multicentre observational study, H&E-stained biopsy sections of patients with gastric cancer were collected from four hospitals. All patients underwent NAC followed by gastrectomy. The Becker tumor regression grading (TRG) system was used to evaluate the pathologic chemotherapy response. Based on H&E-stained slides of biopsies, DL methods (Inception-V3, Xception, EfficientNet-B5, and ensemble CRSNet models) were employed to predict the pathological response by scoring the tumor tissue to obtain a histopathological biomarker, the chemotherapy response score (CRS). The predictive performance of the CRSNet was evaluated. RESULTS: 69,564 patches from 230 whole-slide images of 213 patients with gastric cancer were obtained in this study. Based on the F1 score and area under the curve (AUC), an optimal model was finally chosen, named the CRSNet model. Using the ensemble CRSNet model, the response score derived from H&E staining images reached an AUC of 0.936 in the internal test cohort and 0.923 in the external validation cohort for predicting pathological response. The CRS of major responders was significantly higher than that of minor responders in both internal and external test cohorts (both p < 0.001). CONCLUSION: In this study, the proposed DL-based biomarker (CRSNet model) derived from histopathological images of the biopsy showed potential as a clinical aid for predicting the response to NAC in patients with locally advanced GC. Therefore, the CRSNet model provides a novel tool for the individualized management of locally advanced gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Terapia Neoadjuvante , Gastrectomia , Biópsia
12.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903542

RESUMO

Inflammatory response and cell death play key roles in the mechanism of myocardial cell injury induced by heat stroke (HS) in rats. Ferroptosis is a newly discovered regulatory type of cell death, which is involved in the occurrence and development of various cardiovascular diseases. However, the role of ferroptosis in the mechanism of cardiomyocyte injury caused by HS remains to be clarified. The purpose of this study was to investigate the role and potential mechanism of Toll-like receptor 4 (TLR4) in cardiomyocyte inflammation and ferroptosis under HS conditions at the cellular level. The HS cell model was established by exposing H9C2 cells at 43 °C for 2 h and then recovering at 37 °C for 3 h. The association between HS and ferroptosis was investigated by adding the ferroptosis inhibitor, liproxstatin-1, and the ferroptosis inducer, erastin. The results show that the expressions of ferroptosis-related proteins recombinant solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were decreased, the contents of glutathione (GSH) were decreased, and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ were increased in H9C2 cells in the HS group. Moreover, the mitochondria of the HS group became smaller and the membrane density increased. These changes were consistent with the effects of erastin on H9C2 cells and were reversed with liproxstatin-1. The addition of TLR4 inhibitor TAK-242 or NF-κB inhibitor PDTC reduced the expressions of NF-κB and p53, increased the expressions of SLC7A11 and GPX4, reduced the contents of TNF-α, IL-6 and IL-1ß, increased the content of GSH and reduced MDA, ROS, and Fe2+ levels in H9C2 cells under the HS condition. TAK-242 may improve the mitochondrial shrinkage and membrane density of H9C2 cells induced by HS. In conclusion, this study illustrated that inhibition of the TLR4/NF-κB signaling pathway can regulate the inflammatory response and ferroptosis induced by HS, which provides new information and a theoretical basis for the basic research and clinical treatment of cardiovascular injuries caused by HS.


Assuntos
Ferroptose , Golpe de Calor , Ratos , Animais , Miócitos Cardíacos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Golpe de Calor/metabolismo
13.
J Org Chem ; 87(18): 12424-12433, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36046980

RESUMO

An efficient copper-iodine cocatalyzed intermolecular C-H aminocyanation of indoles with a broad substrate scope has been developed for the first time. This method enables highly step-economic access to 2-amino-3-cyanoindoles in moderate to good yields and provides a complementary strategy for the regioselective difunctionalization of carbon═carbon double bonds of interest in organic synthesis and related areas. Mechanistic studies suggest that these transformations are initiated by iodine-mediated C2-H amination with azoles, followed by copper-catalyzed C3-H cyanation with ethyl cyanoformate.


Assuntos
Indóis , Iodo , Azóis/química , Catálise , Cobre/química , Indóis/química , Iodetos , Iodo/química
14.
Inorg Chem ; 61(28): 10957-10964, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35792093

RESUMO

Herein, two robust isoreticular metal-organic frameworks (MOFs), ([Bi(CPTTA)]·[Me2NH2]·2DMF) (JLU-MOF120, H4CPTTA = 5'-(4-carboxyphenyl)-[1,1':3',1″-terphenyl]-3,4″,5-tricarboxylic acid, DMF = N, N- dimethylformamide) and ([In(CPTTA)]·[MeNH3]·2.5H2O·1.5NMF) (JLU-MOF121, NMF = N- methylformamide), with different interpenetration degrees were successfully constructed. According to the hard-soft acid-base (HSAB) theory, high-valent metal ions and carboxylate-based ligands were selected and formed twofold interpenetrated structures with saturated coordinated mononuclear second building units ([M(COO)4], M = Bi, In). Owing to the features of the frameworks, JLU-MOF120 and JLU-MOF121 exhibited excellent stability, which could retain their integrity in water for at least 14 days and aqueous solutions with a pH range of 3-11 for at least 24 h. According to the structural regulation strategy, by changing the torsion angles of the ligand, the degrees of interpenetration for JLU-MOF120 and JLU-MOF121 were different, leading to various gate-opening pressures in CO2 at 195 K. Furthermore, JLU-MOF120 exhibits the scarce potential of C2H2/CO2 separation among Bi-MOF materials at 298 K under 101 kPa, JLU-MOF121 shows high CO2/CH4 selectivity under ambient conditions (11.7 for gas mixtures of 50 and 50% and 16.1 for gas mixtures of 5 and 95%). Moreover, owing to the flexibility of the structure, JLU-MOF121 possesses disparate breathing behaviors for C2H2 and C2H6 at 273 and 298 K, with the differences in uptakes among C2 hydrocarbons resulting in the potentiality of C2H4 purification. Overall, such HSAB theory and the structural regulation strategy could provide a valid method for constructing stable and flexible structures for the application in gas separation.

15.
J Biochem Mol Toxicol ; 36(5): e23016, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35239232

RESUMO

Prunetin (PRU) is an O-methylated flavonoid that is present in various natural plants and a primary significant compound found in isoflavone. Liver cancer creates major carcinogenic death despite recently advanced therapies. Hepatocellular carcinoma (HCC) treatment and prognosis are better in people with secure liver function. In the present study, we evaluated the action of PRU on diethylnitrosamine (DEN) alone HCC in a rat model through inflammation-mediated cell proliferative phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway analysis. Male Wistar rats were divided into four groups of six rats each. Group I, normal rats; Group II, DEN alone; Group III, DEN + PRU, and Group IV, PRU-alone. All groups of rats carried out hepatic cancer development by hypothesis antioxidant, biochemical, cell proliferative, apoptosis, cytokines protein, and gene expression status profiles. In tumor incidence DEN + PRU, 100% delayed the tumor growth disappearance of the lesion,  and reversal of normal liver architecture was observed. Liver marker enzymes levels decreased when antioxidant levels (superoxidase dismutase, catalase, glutathione peroxidase, and glutathione reductase) were in Group III. Proinflammatory markers nuclear factor-κB, interleukin (IL)-6, IL-1ß, and tumor necrosis factor α, were elevated in the rat's serum in Group III. Cell proliferative markers proliferating cell nuclear antigen and Cyclin-D1 protein expressions were downregulated; in contrast, Bcl-2, Bax, caspase-3, and caspase-9 gene expressions were upregulated and then it followed that protein expression of PI3K/AKT was downregulated in PRU-treated groups. PRU assisted reversal of liver damage, antioxidant enzyme restoration cytokine balance, protein, and gene expression to control levels. Taken together, PRU improves functions of the liver, and as such prevents HCC. PRU can be used together with chemopreventives for HCC.


Assuntos
Carcinoma Hepatocelular , Isoflavonas , Neoplasias Hepáticas , Animais , Antioxidantes/metabolismo , Carcinogênese , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Dietilnitrosamina/toxicidade , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Masculino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
16.
Environ Res ; 203: 111821, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370988

RESUMO

Frequent ozone and fine particulate matter (PM2.5) pollution have been occurring in the Guanzhong Plain in China. To effectively control the tropospheric ozone and PM2.5 pollution, this study performed measurements of 102 VOCs species from Sep.19-25 (autumn) and Nov.27-Dec. 8, 2017 (winter) at Weinan in the central Guanzhong Plain. The total volatile organic compounds (TVOCs) concentrations were 95.8 ± 30.6 ppbv in autumn and 74.4 ± 37.1 ppbv in winter. Alkanes were the most abundant group in both of autumn and winter, accounting for 33.5% and 39.6% of TVOCs concentrations, respectively. The levels of aromatics and oxygenated VOCs were higher in autumn than in winter, mainly due to changes in industrial activities and combustion strength. Photochemical reactivities and ozone formation potentials (OFPs) of VOCs were calculated by applying the OH radical loss rate (LOH) and maximum incremental reactivity (MIR) method, respectively. Results showed that Alkenes and aromatics were the key VOCs in term ozone formation in Weinan, which together contributed 59.6% ̶ 65.3% to the total LOH and OFP. Secondary organic aerosol formation potentials (SOAFP) of the measured VOCs were investigated by employing the fractional aerosol coefficient (FAC) method. Aromatics contributed 94.9% and 96.2% to the total SOAFP in autumn and winter, respectively. The regional transport effects on VOCs and ozone formation were investigated by using trajectory analysis and potential source contribution function (PSCF). Results showed that regional anthropogenic sources from industrial cities (Tongchuan, Xi'an city) and biogenic sources from Qinling Mountain influenced VOCs levels and OFP at Weinan. Future studies need to emphasize on meteorological factors and sources that impact on VOCs concentrations in Weinan.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
17.
Environ Res ; 211: 113036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283079

RESUMO

As critical precursors of tropospheric ozone (O3) and secondary organic aerosol (SOA), volatile organic compounds (VOCs) largely influence air quality in urban environments. In this study, measurements of 102 VOCs at all five major cities in the Guanzhong Plain (GZP) were conducted during Sep.09-Oct. 13, 2017 (autumn) and Nov. 14, 2017-Jan. 19, 2018 (winter) to investigate the characteristics of VOCs and their roles in O3 and SOA formation. The average concentrations of total VOCs (TVOCs) at Xi'an (XA), Weinan (WN), Xianyang (XY), Tongchuan (TC), and Baoji (BJ) sites were in the range of 55.2-110.2 ppbv in autumn and 42.4-74.3 ppbv in winter. TVOCs concentrations were reduced by 22.4%-43.5% from autumn to winter at XA, WN and BJ. Comparatively low concentrations of TVOCs were observed in XY and TC, ranging from 53.5 to 62.7 ppbv across the sampling period. Alkanes were the major components at all sites, accounting for 26.4%-48.9% of the TVOCs during the sampling campaign, followed by aromatics (4.2%-26.4%). The average concentration of acetylene increased by a factor of up to 4.8 from autumn to winter, indicating the fuel combustion in winter heating period significantly impacted on VOCs composition in the GZP. The OH radical loss rate and maximum incremental reactivity method were employed to determine photochemical reactivities and ozone formation potentials (OFPs) of VOCs, respectively. The VOCs in XA and WN exhibited the highest reactivities in O3 formation, with the OFP of 168-273 ppbv and the OH loss rates of 19.3-40.8 s-1. Alkenes and aromatics primarily related to on-road and industrial emissions contributed 57.8%-76.3% to the total OFP. The contribution of aromatics to the SOA formation at all sites reached 94.1%-98.6%. Considering the potential source-area of VOCs, regional transport of VOCs occurred within the GZP cities.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
18.
Ecotoxicol Environ Saf ; 238: 113576, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512474

RESUMO

Non-road emission regulations are becoming increasingly rigorous, which makes it necessary for non-road engines to adopt aftertreatment systems. The commonly used aftertreatments mainly include diesel oxidation catalytic (DOC), diesel particulate filter (DPF), particle oxidation catalyst (POC), selective catalytic reduction (SCR) and ammonia purification catalyst (ASC). The purpose of this study is to investigate the effects of using an integrated system (DOC + DPF/POC + SCR + ASC) on non-road diesel engine emissions under steady-state and transient operating conditions, respectively. The major works are the comparison between POC and DPF from the viewpoint of emission reduction. The results show that both POC and DPF can effectively reduce particulate matter (PM) and nitrogen oxide (NOX) emissions under steady-state conditions, and DPF has better purification effect than POC, especially for PM. The PM conversion rate of DPF is up to 87%, while that of POC is only 60% under the non-road steady-state test cycle (NRSC). Both NOX and hydrocarbon (HC) conversion rates are high, exceeding 95%. The conversions of PM, NOX, HC, and carbon monoxide (CO) of DPF in the non-road transient test cycle (NRTC) are 92.83%, 96.99%, 96.86% and 81.45%, respectively, while those of POC are 60.12%, 95.45%, 92.82% and 79.51%, respectively. Both the POC and DPF systems can meet the emission regulation limits. As a result, POC has the potential to substitute DPF in non-road engines due to its lower product and maintenance costs. We hope that the comparison study will provide useful guidance for improving the emissions performance of non-road diesel engines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Catálise , Poeira , Gasolina , Hidrocarbonetos/análise , Material Particulado/análise , Emissões de Veículos/análise
19.
Small ; 17(10): e2007239, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590684

RESUMO

Since the sluggish kinetic process of oxygen reduction (ORR)/evolution (OER) reactions, the design of highly-efficient, robust, and cost-effective catalysts for flexible metal-air batteries is desired but challenging. Herein, bimetallic nanoparticles encapsulated in the N-doped hollow carbon nanocubes (e.g., FeCo-NPs/NC, FeNi-NPs/NC, and CoNi-NPs/NC) are rationally designed via a general heat-treatment strategy of introducing NH3 pyrolysis of dopamine-coated metal-organic frameworks. Impressively, the resultant FeCo-NPs/NC hybrid exhibits superior bifunctional electrocatalytic performance for ORR/OER, manifesting exceptional discharging performance, outstanding lifespan, and prime flexibility for both Zn/Al-air batteries, superior to those of state-of-the-art Pt/C and RuO2 catalysts. X-ray absorption near edge structure and density functional theory indicate that the strong synergy between FeCo alloy and N-doped carbon frameworks has a distinctive activation effect on bimetallic Fe/Co atoms to synchronously modify the electronic structure and afford abundant dual-active Fe/Co-Nx sites, large surface area, high nitrogen doping level, and conductive carbon frameworks to boost the reversible oxygen electrocatalysis. Such N-doped carbon with bimetallic alloy bonds provides new pathways for the rational creation of high-efficiency energy conversion and storage equipment.

20.
Environ Monit Assess ; 193(4): 164, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675429

RESUMO

Alternative-fueled vehicles have been introduced to solve the problem of the energy crisis and address air pollution. However, typical pollutants (e.g., methane and methanol) are emitted through combustion of the alternative fuel. In this study, the concentrations of regulated pollutants (CO, NO) and unregulated pollutants (CH4, methanol, formaldehyde, and 8 NMHC species) in the exhaust from methanol, CNG, and gasoline-fueled vehicles (MV, NGV, and GV) were measured systematically on a chassis dynamometer during an in-use vehicle driving cycle. The emission factors of these gaseous pollutants were calculated, and the ozone formation potential (OFP) of each ozone precursor measured in this work was evaluated with the MIR scale. The results showed that NO and NMHC species exhausted from the MV and NGV decreased significantly than that from the GV. However, the unburned pollutants exhausted from MV and NGV warrant attention. For the OFPs, CO was the largest contributor for all tested vehicles. Formaldehyde was ranked the second for the MV and NGV. Among the tested vehicles, the OFPs of NGV were the lowest. The results are helpful in quantitating analysis of the vehicle emissions and evaluating the impacts of alternative-fueled vehicles on atmospheric environment.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina/análise , Metanol , Veículos Automotores , Ozônio/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa