Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 95(5): e28797, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218584

RESUMO

The immunogenicity induced by the third dose of inactivated coronavirus disease 2019 (COVID-19) vaccines in people living with HIV (PLWH) is unclear, and relevant literature is extremely scarce. It is important to add evidence on the humoral immune response induced by the third dose of inactivated COVID-19 vaccine in PLWH. We collected peripheral venous blood for spike receptor binding domain-protein specific immunoglobulin G (S-RBD-IgG) antibody tests at 28 days after the second dose (T1 ), 180 days after the second dose (T2 ) and 35 days after the third dose (T3 ) of inactivated COVID-19 vaccines in PLWH. The differences in S-RBD-IgG antibody levels and specific seroprevalence among T1 , T2 , and T3 time periods were analyzed, and the effects of age, vaccine brand, and CD4+ T cell count on the levels and specific seroprevalence of S-RBD-IgG antibody induced by the third dose in PLWH were examined. The third dose of inactivated COVID-19 vaccines induced strong S-RBD-IgG antibody responses in PLWH. The levels and specific seroprevalence of S-RBD-IgG antibody were significantly higher than those at 28 and 180 days after the second dose and were not affected by vaccine brand or CD4+ T cell count. Younger PLWH produced higher levels of S-RBD-IgG antibody. The third dose of inactivated COVID-19 vaccine showed good immunogenicity in PLWH. It is necessary to popularize the third dose in the PLWH population, especially PLWH who do not respond to two doses of inactivated COVID-19 vaccines. Meanwhile, the durability of the protection provided by the third dose in PLWH must be continuously monitored.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Vacinas contra COVID-19 , Estudos Soroepidemiológicos , COVID-19/prevenção & controle , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 171-177, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37157061

RESUMO

Respiratory infectious diseases (RID) are the major public health problems threatening the people's lives and health.Infection control (IC) is one of the effective tools to contain the occurrence and spread of RID.We collected the articles and data on IC published since January 1,2018 and summarized the achievements,problems,and challenges of IC from administrative control,management control,environment and engineering control,and personal protection in the medical institutions and public places in China.The efforts for IC vary in different regions and medical institutions of different levels.There are still links to be improved for IC from administrative control,management control,environment and engineering control,and personal protection,especially in community-level medical institutions and public areas.It is urgent to strengthen the implementation of IC policies and conduct IC precisely according to local situations.We proposed the following suggestions.First,the existing IC products and tools should be applied to precisely implement the IC measures;second,modern high technology should be employed to develop efficient and convenient IC products and tools;finally,a digital or intelligent IC platform should be built for monitoring infections,so as to contain the occurrence and spread of RID.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Controle de Infecções , China/epidemiologia
3.
Retrovirology ; 18(1): 22, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399785

RESUMO

BACKGROUND: CRF55_01B is a newly identified HIV-1 circulating recombinant form originated from MSM in China. However, its impact on the disease progression and transmission risk has not been investigated. This study aimed to determine the impact of CRF55_01B infection on viral dynamics and immunological status so as to provide scientific evidence for further control and prevention effort on CRF55_01B. Linear mixed effect models were applied to evaluate CD4 cell count decline and viral load increase by subtype. RESULTS: Of the 3418 blood samples, 1446 (42.3%) were CRF07_BC, 1169 (34.2%) CRF01_AE, 467 (13.7%) CRF55_01B, 249 (7.3%) type B, and 87 (2.5%) other subtypes (CRF_08BC, CRF_01B, C). CRF55_01B had become the third predominant strain since 2012 in Shenzhen, China. CRF55_01B-infected MSM showed lower median of CD4 count than CRF07_BC-infected MSM (349.5 [IQR, 250.2-474.8] vs. 370.0 [IQR, 278.0-501.0], P < 0.05). CRF55_01B infection was associated with slower loss of CD4 count than CRF01_AE (13.6 vs. 23.3 [cells/µl]¹/²/year, P < 0.05)among MSM with initial CD4 count of 200-350 cells/µl. On the other hand, those infected with CRF55_01B showed higher median plasma HIV RNA load (5.4 [IQR, 5.0-5.9]) than both CRF01_AE (5.3 [IQR, 4.8-5.7], P < 0.05) and CRF07_BC (5.0 log10 [IQR, 4.5-5.5], P < 0.001) at the initiation of antiretroviral therapy. Furthermore, the annual increasing rate of viral load for CRF55_01B infection was significantly higher than that of CRF07_BC (2.0 vs. 0.7 log10 copies/ml/year, P < 0.01). CONCLUSIONS: The relatively lower CD4 count and faster increase of plasma HIV RNA load of CRF55_01B-infected MSM without antiretroviral therapy suggest that CRF55_01B may lead to longer asymptomatic phase and higher risk of HIV transmission. Strengthened surveillance, tailored prevention strategies and interventions, and in-depth research focusing on CRF55_01B are urgently needed to forestall potential epidemic.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Homossexualidade Masculina/estatística & dados numéricos , RNA Viral/sangue , Carga Viral , Adulto , Contagem de Linfócito CD4/tendências , China/epidemiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Análise de Sequência de DNA , Adulto Jovem
4.
BMC Microbiol ; 21(1): 194, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174835

RESUMO

BACKGROUND: Serological test is helpful in confirming and tracking infectious diseases in large population with the advantage of fast and convenience. Using the specific epitope peptides identified from the whole antigen as the detection antigen is sensitive and relatively economical. The development of epitope peptide-based detection kits for COVID-19 patients requires comprehensive information about epitope peptides. But the data on B cell epitope of SARS-CoV-2 spike protein is still limited. More importantly, there is a lack of serological data on the peptides in the population. In this study, we aimed to identify the B cell epitope peptides of spike protein and detect the reactivity in serum samples, for further providing data support for their subsequent serological applications. RESULTS: Two B cell linear epitopes, P104 and P82, located in non-RBD region of SARS-CoV-2 S protein were identified by indirect ELISA screening of an overlapping peptide library of the S protein with COVID-19 patients' convalescent serum. And the peptides were verified by testing with 165 serum samples. P104 has not been reported previously; P82 is contained in peptide S21P2 reported before. The positive reaction rates of epitope peptides S14P5 and S21P2, the two non-RBD region epitopes identified by Poh et al., and P82 and P104 were 77.0%, 73.9%, 61.2% and 30.3%, respectively, for 165 convalescent sera, including 30 asymptomatic patients. Although P104 had the lowest positive rate for total patients (30.3%), it exhibited slight advantage for detection of asymptomatic infections (36.7%). Combination of epitopes significantly improved the positive reaction rate. Among all combination patterns, (S14P5 + S21P2 + P104) pattern exhibited the highest positive reaction rate for all patients (92.7%), as well as for asymptomatic infections (86.7%), confirming the feasibility of P104 as supplementary antigen for serological detection. In addition, we analyzed the correlation between epitopes with neutralizing antibody, but only S14P5 had a medium positive correlation with neutralizing antibody titre (rs = 0.510, P < 0.01). CONCLUSION: Our research proved that epitopes on non-RBD region are of value in serological detection especially when combination more than one epitope, thus providing serological reaction information about the four epitopes, which has valuable references for their usage.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19 , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito B , Glicoproteína da Espícula de Coronavírus/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Criança , Pré-Escolar , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/imunologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
5.
Biologicals ; 64: 23-27, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980349

RESUMO

The Mycobacterium tuberculosis complex (MTBC) is composed of several genetically related and pathogenic mycobacterial species, including M. tuberculosis, M. bovis and M.africanum et al. In our previous study, we found that M. bovis strains had a unique SNP located in position 1055 in the sequence of the pstS1 gene in which a T was substituted by a C. In this study, specific primers and MGB probes were designed according to the mutation in PstS1 gene, and a sensitive, specific and rapid real-time PCR assay for M. bovis was established. Then the assay was used to detect M. bovis in simulation samples. The minimum detectable concentration is 101 copies for M. bovis DNA. The standard curve showed correlation coefficient between threshold cycle and PstS1 gene fragment copy number was 0.997 and slope is -3.144. The minimum detectable concentration is 101 cells/ml for simulation sample. In addition, M.bovis strain 93006, 14 clinical BCG stains and 7 clinical M.bovis strain showed positive while the other strains showed negative results, which proved good specificity. This assay had high sensitivity and specificity for identification of M. bovis from the simulation specimens. The assay can be applied for epidemiological and ecological surveillance of M. bovis strains.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genes Bacterianos , Mutação , Mycobacterium bovis/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(9): 936-941, 2020 Sep.
Artigo em Zh | MEDLINE | ID: mdl-32933622

RESUMO

OBJECTIVE: To investigate whether there is a difference in cerebellar development between appropriate -for-gestational-age (AGA) infants and small-for-gestational-age (SGA) infants. METHODS: A total of 165 AGA infants and 105 SGA infants, with a gestational age of 26-40+6 weeks, were enrolled in this study. Within 24-48 hours after birth, ultrasound examination was performed to measure the transverse diameter of the cerebellum, the height of the vermis, the area of the vermis, the perimeter of the vermis, and the area and perimeter of the cerebellum on transverse section. A Pearson correlation analysis was used to investigate the correlation between cerebellar measurements and gestational age. RESULTS: In both AGA and SGA infants, all cerebellar measurements were positively correlated with gestational age (r=0.50-0.81, P<0.05). In AGA and SGA infants, there were no significant differences in the measurements between the 25-27+6 weeks, 28-30+6 weeks, and 31-33+6 weeks of gestational age subgroups (P>0.05), while in the 34-36+6 weeks and 37-40+6 weeks subgroups, the SGA infants had significantly lower measurements than the AGA infants (P<0.05). CONCLUSIONS: The SGA infants with a gestational age of <34 weeks have intrauterine cerebellar development similar to AGA infants, but those with a gestational age of ≥34 weeks have poorer intrauterine cerebellar development than AGA infants.


Assuntos
Cerebelo , Recém-Nascido Pequeno para a Idade Gestacional , Idade Gestacional , Humanos , Lactente , Ultrassonografia
7.
Antimicrob Agents Chemother ; 59(4): 2045-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605360

RESUMO

Ethambutol (EMB) plays a pivotal role in the chemotherapy of drug-resistant tuberculosis (TB), including multidrug-resistant tuberculosis (MDR-TB). Resistance to EMB is considered to be caused by mutations in the embCAB operon (embC, embA, and embB). In this study, we analyzed the embCAB mutations among 139 MDR-TB isolates from China and found a possible association between embCAB operon mutation and EMB resistance. Our data indicate that 56.8% of MDR-TB isolates are resistant to EMB, and 82.2% of EMB-resistant isolates belong to the Beijing family. Overall, 110 (79.1%) MDR-TB isolates had at least one mutation in the embCAB operon. The majority of mutations were present in the embB gene and the embA upstream region, which also displayed significant correlations with EMB resistance. The most common mutations occurred at codon 306 in embB (embB306), followed by embB406, embA(-16), and embB497. Mutations at embB306 were associated with EMB resistance. DNA sequencing of embB306-497 was the best strategy for detecting EMB resistance, with 89.9% sensitivity, 58.3% specificity, and 76.3% accuracy. Additionally, embB306 had limited value as a candidate predictor for EMB resistance among MDR-TB infections in China.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Etambutol/farmacologia , Proteínas de Membrana/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Pentosiltransferases/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose/microbiologia , China , DNA Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana
8.
Int J Med Sci ; 12(2): 126-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25589888

RESUMO

Host immune pressure and associated immune evasion of pathogenic bacteria are key features of host-pathogen co-evolution. Human T-cell epitopes of Mycobacterium tuberculosis (M. tuberculosis) were evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. However, in our previous studies, proteins MPT64, PstS1, Rv0309 and Rv2945c all harbored higher numbers of amino acid substitutions in their T cell epitopes, which suggests their roles in ongoing immune evasion. Here, we used the same set of 180 clinical M. tuberculosis complex (MTBC) isolates from China, amplified the genes encoding Ag85 complex, and compared the sequences. The results showed that Ag85 were hyperconserved in T/B cell epitopes and the genes were more likely to be under purifying selection. The divergence of host immune selection on different proteins may result from different function of the proteins. In addition, A312G of Ag85A and T418C of Ag85B may represent special mutations in BCG strains, which may be used to differentiate M.bovis and BCG strains from MTB strains. Also, C714A in Ag85B seems to be a valuable phylogenetic marker for Beijing strains.


Assuntos
Aciltransferases/genética , Antígenos de Bactérias/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único/genética , China , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Variação Genética/genética , Humanos , Mutação , Mycobacterium bovis/genética , Mycobacterium tuberculosis/classificação
9.
Antimicrob Agents Chemother ; 58(6): 3475-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24733464

RESUMO

To determine the prevalence and molecular characteristics of drug-resistant tuberculosis in Hunan province, drug susceptibility testing and spoligotyping methods were performed among 171 M. tuberculosis isolates. In addition, the mutated characteristics of 12 loci, including katG, inhA, rpoB, rpsL, nucleotides 388 to 1084 of the rrs gene [rrs(388-1084)], embB, pncA, tlyA, eis, nucleotides 1158 to 1674 of the rrs gene [rrs(1158-1674)], gyrA, and gyrB, among drug-resistant isolates were also analyzed by DNA sequencing. Our results indicated that the prevalences of isoniazid (INH), rifampin (RIF), streptomycin (SM), ethambutol (EMB), pyrazinamide (PZA), capreomycin (CAP), kanamycin (KAN), amikacin (AKM), and ofloxacin (OFX) resistance in Hunan province were 35.7%, 26.9%, 20.5%, 9.9% 15.2%, 2.3%, 1.8%, 1.2%, and 10.5%, respectively. The previously treated patients presented significantly increased risks for developing drug resistance. The majority of M. tuberculosis isolates belonged to the Beijing family. Almost all the drug resistance results demonstrated no association with genotype. The most frequent mutations of drug-resistant isolates were katG codon 315 (katG315), inhA15, rpoB531, rpoB526, rpoB516, rpsL43, rrs514, embB306, pncA96, rrs1401, gyrA94, and gyrA90. These results contribute to the knowledge of the prevalence of drug resistance in Hunan province and also expand the molecular characteristics of drug resistance in China.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Demografia , Feminino , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
10.
Antimicrob Agents Chemother ; 58(4): 1997-2005, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419342

RESUMO

To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Capreomicina/farmacologia , Genótipo , Humanos , Isoniazida/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Ofloxacino/farmacologia , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/genética
11.
Int Immunopharmacol ; 129: 111542, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342063

RESUMO

Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Antígenos de Bactérias , Interleucina-4 , Tuberculose/diagnóstico , Tuberculose/prevenção & controle , ELISPOT , Proteínas Recombinantes , Desenvolvimento de Vacinas , Proteínas de Bactérias/genética
12.
Infect Drug Resist ; 17: 403-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328339

RESUMO

Background: China is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB). However, published data on pyrazinamide (PZA) resistance are still limited in Hunan province, China. This study investigated the prevalence, transmission, and genetic diversity of PZA resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Hunan province. Methods: Drug susceptibility testing (DST) with the Bactec MGIT 960 PZA kit and pyrazinamidase (PZase) testing were conducted on all 298 MDR clinical isolates. Moreover, 24-locus MIRU-VNTR and DNA sequencing of pncA, rpsA, and panD genes were conducted on 180 PZA-resistant (PZA-R) isolates. Results: The prevalence of PZA resistance among MDR-TB strains reached 60.4%. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA, rpsA, and panD mutations showed that transmission of PZA-R isolates played a significant role in the formation of PZA-R TB. Ninety-eight mutation patterns were observed in the pncA among 180 PZA-R isolates, and seventy-one (72.4%) were point mutations. Twenty-four of these mutations are new, including 2 base substitutions (V93G and T153S) and 22 nucleotide deletions or insertions. The W119C was found in PZA-S isolates, on the other hand, F94L and V155A mutations were found in both PZA resistant and susceptible isolates with positive PZase activity, indicating that they were not associated with PZA resistance. This is not entirely in line with the WHO catalogue. Ten novel rpsA mutations were found in 10 PZA-R isolates, which all combined with mutations in pncA. Thus, it is unpredictable whether these mutations in rpsA can impact PZA resistance. No panD mutation was found in all PZA-R isolates. Conclusion: DNA sequencing of pncA and PZase activity testing have great potential in predicting PZA resistance.

13.
Front Microbiol ; 15: 1290227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686109

RESUMO

Background: Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), remains a serious public health problem. Increasing evidence supports that selective evolution is an important force affecting genomic determinants of Mtb phenotypes. It is necessary to further understand the Mtb selective evolution and identify the positively selected genes that probably drive the phenotype of Mtb. Methods: This study mainly focused on the positive selection of 807 Mtb strains from Southern Xinjiang of China using whole genome sequencing (WGS). PAML software was used for identifying the genes and sites under positive selection in 807 Mtb strains. Results: Lineage 2 (62.70%) strains were the dominant strains in this area, followed by lineage 3 (19.45%) and lineage 4 (17.84%) strains. There were 239 codons in 47 genes under positive selection, and the genes were majorly associated with the functions of transcription, defense mechanisms, and cell wall/membrane/envelope biogenesis. There were 28 codons (43 mutations) in eight genes (gyrA, rpoB, rpoC, katG, pncA, embB, gid, and cut1) under positive selection in multi-drug resistance (MDR) strains but not in drug-susceptible (DS) strains, in which 27 mutations were drug-resistant loci, 9 mutations were non-drug-resistant loci but were in drug-resistant genes, 2 mutations were compensatory mutations, and 5 mutations were in unknown drug-resistant gene of cut1. There was a codon in Rv0336 under positive selection in L3 strains but not in L2 and L4 strains. The epitopes of T and B cells were both hyper-conserved, particularly in the T-cell epitopes. Conclusion: This study revealed the ongoing selective evolution of Mtb. We found some special genes and sites under positive selection which may contribute to the advantage of MDR and L3 strains. It is necessary to further study these mutations to understand their impact on phenotypes for providing more useful information to develop new TB interventions.

14.
J Clin Microbiol ; 51(5): 1558-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23390287

RESUMO

We selected 180 clinical isolates of the Mycobacterium tuberculosis complex (MTBC) from patients in China and performed comparative sequence analysis of the mpt64 gene after amplification. From the results, we found that polymorphisms of the mpt64 gene in the MTBC may be the reason for changes in the antigen produced, which may in turn cause alterations of related functions, thereby allowing immune evasion.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Antígenos de Bactérias/química , Sequência de Bases , China , Humanos , Evasão da Resposta Imune , Dados de Sequência Molecular , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Tuberculose/microbiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-36900957

RESUMO

Respiratory infectious diseases (RIDs) pose threats to people's health, some of which are serious public health problems. The aim of our study was to explore epidemic situations regarding notifiable RIDs and the epidemiological characteristics of the six most common RIDs in mainland China. We first collected the surveillance data of all 12 statutory notifiable RIDs for 31 provinces in mainland China that reported between 2010 and 2018, and then the six most prevalent RIDs were selected to analyze their temporal, seasonal, spatiotemporal and population distribution characteristics. From 2010 to 2018, there were 13,985,040 notifiable cases and 25,548 deaths from RIDs in mainland China. The incidence rate of RIDs increased from 109.85/100,000 in 2010 to 140.85/100,000 in 2018. The mortality from RIDs ranged from 0.18/100,000 to 0.24/100,000. The most common RIDs in class B were pulmonary tuberculosis (PTB), pertussis, and measles, while those in class C were seasonal influenza, mumps and rubella. From 2010 to 2018, the incidence rate of PTB and rubella decreased; however, pertussis and seasonal influenza increased, with irregular changes in measles and mumps. The mortality from PTB increased from 2015 to 2018, and the mortality from seasonal influenza changed irregularly. PTB was mainly prevalent among people over 15 years old, while the other five common RIDs mostly occurred among people younger than 15 years old. The incidence of the six common RIDs mostly occurred in winter and spring, and they were spatiotemporally clustered in different areas and periods. In conclusion, PTB, seasonal influenza and mumps remain as public health problems in China, suggesting that continuous government input, more precise interventions, and a high-tech digital/intelligent surveillance and warning system are required to rapidly identify emerging events and timely response.


Assuntos
Doenças Transmissíveis , Influenza Humana , Sarampo , Caxumba , Rubéola (Sarampo Alemão) , Tuberculose Pulmonar , Coqueluche , Humanos , Adolescente , Caxumba/epidemiologia , Doenças Transmissíveis/epidemiologia , China/epidemiologia , Incidência
16.
Front Immunol ; 14: 1138818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153610

RESUMO

Tuberculosis (TB) is an infectious disease that seriously affects human health. Until now, the only anti-TB vaccine approved for use is the live attenuated Mycobacterium bovis (M. bovis) vaccine - BCG vaccine, but its protective efficacy is relatively low and does not provide satisfactory protection against TB in adults. Therefore, there is an urgent need for more effective vaccines to reduce the global TB epidemic. In this study, ESAT-6, CFP-10, two antigens full-length and the T-cell epitope polypeptide antigen of PstS1, named nPstS1, were selected to form one multi-component protein antigens, named ECP001, which include two types, one is a mixed protein antigen named ECP001m, the other is a fusion expression protein antigen named ECP001f, as candidates for protein subunit vaccines. were prepared by constructing one novel subunit vaccine by mixing or fusing the three proteins and combining them with aluminum hydroxide adjuvant, and the immunogenicity and protective properties of the vaccine was evaluated in mice. The results showed that ECP001 stimulated mice to produce high titre levels of IgG, IgG1 and IgG2a antibodies; meanwhile, high levels of IFN-γ and a broad range of specific cytokines were secreted by mouse splenocytes; in addition, ECP001 inhibited the proliferation of Mycobacterium tuberculosis in vitro with a capacity comparable to that of BCG. It can be concluded that ECP001 is a novel effective multicomponent subunit vaccine candidate with potential as BCG Initial Immunisation-ECP001 Booster Immunisation or therapeutic vaccine for M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG , Epitopos de Linfócito T , Antígenos de Bactérias , Tuberculose/prevenção & controle , Citocinas/metabolismo , Vacinas de Subunidades Antigênicas
17.
Vaccine ; 41(26): 3836-3846, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37225573

RESUMO

Tuberculosis (TB) is the leading cause of death from infectious diseases worldwide, and developing a new TB vaccine is a priority for TB control. Combining multiple immunodominant antigens to form a novel multicomponent vaccine with broad-spectrum antigens to induce protective immune responses is a trend in TB vaccine development. In this study, we used T-cell epitope-rich protein subunits to construct three antigenic combinations: EPC002, ECA006, and EPCP009. Fusion expression of purified protein EPC002f (CFP-10-linker-ESAT-6-linker-nPPE18), ECA006f (CFP-10-linker-ESAT-6-linker-Ag85B), and EPCP009f (CFP-10-linker-ESAT-6-linker-nPPE18-linker-nPstS1) and recombinant purified protein mixtures EPC002m (mix of CFP-10, ESAT-6, and nPPE18), ECA006m (mix of CFP-10, ESAT-6, and Ag85B), and EPCP009m (mix of CFP-10, ESAT-6, nPPE18, and nPstS1) were used as antigens, formulated with alum adjuvant, and the immunogenicity and efficacy were analyzed using immunity experiments with BALB/c mice. All protein-immunized groups elicited higher levels of humoral immunity, including IgG and IgG1. The IgG2a/IgG1 ratio of the EPCP009m-immunized group was the highest, followed by that of the EPCP009f-immunized group, which was significantly higher than the ratios of the other four groups. The multiplex microsphere-based cytokine immunoassay revealed that EPCP009f and EPCP009m induced the production of a wider range of cytokines than EPC002f, EPC002m, ECA006f, and ECA006m, which included Th1-type (IL-2, IFN-γ, TNF-α), Th2-type (IL-4, IL-6, IL-10), Th17-type (IL-17), and other proinflammatory cytokines (GM-CSF, IL-12). The enzyme-linked immunospot assays demonstrated that the EPCP009f- and EPCP009m-immunized groups had significantly higher amounts of IFN-γ than the other four groups. The in vitro mycobacterial growth inhibition assay demonstrated that EPCP009m inhibited Mycobacterium tuberculosis (Mtb) growth most strongly, followed by EPCP009f, which was significantly better than that of the other four vaccine candidates. These results indicated that EPCP009m containing four immunodominant antigens exhibited better immunogenicity and Mtb growth inhibition in vitro and may be a promising candidate vaccine for the control of TB.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Camundongos , Antígenos de Bactérias , Proteínas de Bactérias , Subunidades Proteicas , Epitopos Imunodominantes , Tuberculose/prevenção & controle , Citocinas/metabolismo , Imunoglobulina G
18.
J Antibiot (Tokyo) ; 76(10): 598-602, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402884

RESUMO

Simple, rapid, and accurate detection of Fluoroquinolone (FQ) resistance is essential for early initiation of appropriate anti-tuberculosis treatment regimen among rifampicin-resistant tuberculosis (RR-TB). In this study, we developed a new assay, which combines multienzyme isothermal rapid amplification and a lateral flow strip (MIRA-LF), to identify the mutations on codons 90 and 94 of gyrA for detecting levofloxacin (LFX) resistance. Compared to conventional phenotypic drug susceptibility testing, the new assay detected fluoroquinolone resistance with a sensitivity, specificity, and accuracy of 92.4%, 98.5%, and 96.5%, respectively. Thus, these characteristics of the newly developed MIRA-LF assay make it particularly useful and accurate for detecting FQ resistance in Mycobacterium tuberculosis in resource-limited condition.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação
19.
Infect Drug Resist ; 16: 3157-3169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235072

RESUMO

Background: The aim of the present study was to investigate the association between vitamin D receptor (VDR) gene polymorphism and tuberculosis susceptibility, as well as the potential interaction of host genetic factors with the heterogeneity of Mycobacterium tuberculosis in the population from Xinjiang, China. Methods: From January 2019 to January 2020, we enrolled 221 tuberculosis patients as the case group and 363 staff with no clinical symptoms as the control group from four designated tuberculosis hospitals in southern Xinjiang, China. The polymorphisms of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in the VDR were detected by sequencing. M. tuberculosis isolates were collected from the case group and identified as Beijing or non-Beijing lineage by multiplex PCR. Propensity score (PS), univariate analysis and multivariable logistic regression models were used to perform the analysis. Results: Our results showed that the allele and genotype frequencies of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in VDR were not correlated with tuberculosis susceptibility or lineages of M. tuberculosis. Two out of six loci of the VDR gene formed one haplotype block, and none of the haplotypes was found to correlate with tuberculosis susceptibility or lineages of M. tuberculosis infected. Conclusion: Polymorphisms in the VDR gene may not indicate susceptibility to tuberculosis. There was also no evidence on the interaction between the VDR gene of host and the lineages of M. tuberculosis in the population from Xinjiang, China. Further studies are nonetheless required to prove our conclusions.

20.
Infect Drug Resist ; 16: 3117-3135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228658

RESUMO

Background: Ethionamide (ETH), a structural analogue of isoniazid (INH), is used for treating multidrug-resistant tuberculosis (MDR-TB). Due to the common target InhA, INH and ETH showed cross-resistance in M. tuberculosis. This study aimed to explore the INH and ETH resistant profiles and genetic mutations conferring independent INH- or ETH-resistance and INH-ETH cross-resistance in M. tuberculosis circulating in south of Xinjiang, China. Methods: From Sep 2017 to Dec 2018, 312 isolates were included using drug susceptibility testing (DST), spoligotyping, and whole genome sequencing (WGS) to analyze the resistance characteristics for INH and/or ETH. Results: Among the 312 isolates, 185 (58.3%) and 127 (40.7%) belonged to the Beijing family and non-Beijing family, respectively; 90 (28.9%) were INH-resistant (INHR) with mutation rates of 74.4% in katG, 13.3% in inhA and its promoter, 11.1% in ahpC and its upstream region, 2.2% in ndh, 0.0% in mshA, whilst 34 (10.9%) were ETH-resistant (ETHR) with mutation rates of 38.2% in ethA, 26.2% in inhA and its promoter, and 5.9% in ndh, 0.0% in ethR or mshA; and 25 (8.0%) were INH-ETH co-resistant (INHRETHR) with mutation rates of 40.0% in inhA and its promoter, and 8% in ndh. katG mutants tended to display high-level resistant to INH; and more inhA and its promoter mutants showed low-level of INH and ETH resistance. The optimal gene combinations by WGS for the prediction of INHR, ETHR, and INHRETHR were, respectively, katG+inhA and its promoter (sensitivity: 81.11%, specificity: 90.54%), ethA+inhA and its promoter+ndh (sensitivity: 61.76%, specificity: 76.62%), and inhA and its promoter+ndh (sensitivity: 48.00%, specificity: 97.65%). Conclusion: This study revealed the high diversity of genetic mutations conferring INH and/or ETH resistance among M. tuberculosis isolates, which would facilitate the study on INHR and/or ETHR mechanisms and provide clues for choosing ETH for MDR treatment and molecular DST methods in south of Xinjiang, China.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa