Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339633

RESUMO

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Assuntos
Genoma , Serpentes , Animais , Serpentes/genética , Adaptação Fisiológica , Aclimatação , Evolução Molecular , Filogenia , Evolução Biológica
3.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684007

RESUMO

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Assuntos
Anfíbios , Biodiversidade , Filogenia , Animais , Anfíbios/classificação , China , Conservação dos Recursos Naturais
4.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286217

RESUMO

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Assuntos
Locomoção , Árvores , Adaptação Fisiológica/genética , Animais , Anuros , Evolução Biológica , Fenômenos Biomecânicos , Genômica , Humanos , Locomoção/genética
5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34941991

RESUMO

Advances in next-generation sequencing (NGS) technologies have led to an exponential increase in the number of whole genome sequences (WGS) in databases. This wealth of WGS data has greatly facilitated the recovery of full mitochondrial genomes (mitogenomes), which are vital for phylogenetic, evolutionary and ecological studies. Unfortunately, most existing software cannot easily assemble mitogenome reference sequences conveniently or efficiently. Therefore, we developed a seed-free de novo assembly tool, MEANGS, which applies the trie-search method to extend contigs from self-discovery seeds and assemble a mitogenome from animal WGS data. We then used data from 16 species with different qualities to compare the performance of MEANGS with three other available programs. MEANGS exhibited the best overall performance since it was the only one that completed all tests, and it assembled full or partial mitogenomes for all of the tested samples while the others failed. Furthermore, MEANGS selects superior assembly sequences and annotates protein-coding genes. Thus, MEANGS can be one of the most efficient software for generating high-quality mitogenomes so far, the further use of it will benefit the study on mitogenome based on whole genome NGS data. MEANGS is available at https://github.com/YanCCscu/meangs.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Sequenciamento Completo do Genoma/métodos , Animais , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Análise de Sequência de DNA , Software
6.
Mol Ecol ; 32(6): 1335-1350, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36073004

RESUMO

Understanding how and why species evolve requires knowledge on intraspecific divergence. In this study, we examined intraspecific divergence in the endangered hot-spring snake (Thermophis baileyi), an endemic species on the Qinghai-Tibet Plateau (QTP). Whole-genome resequencing of 58 sampled individuals from 15 populations was performed to identify the drivers of intraspecific divergence and explore the potential roles of genes under selection. Our analyses resolved three groups, with major intergroup admixture occurring in regions of group contact. Divergence probably occurred during the Pleistocene as a result of glacial climatic oscillations, Yadong-Gulu rift, and geothermal fields differentiation, while complex gene flow between group pairs reflected a unique intraspecific divergence pattern on the QTP. Intergroup fixed loci involved selected genes functionally related to divergence and local adaptation, especially adaptation to hot spring microenvironments in different geothermal fields. Analysis of structural variants, genetic diversity, inbreeding, and genetic load indicated that the hot-spring snake population has declined to a low level with decreased diversity, which is important for the conservation management of this endangered species. Our study demonstrated that the integration of demographic history, gene flow, genomic divergence genes, and other information is necessary to distinguish the evolutionary processes involved in speciation.


Assuntos
Variação Genética , Fontes Termais , Humanos , Animais , Tibet , Variação Genética/genética , Filogenia , Uganda , Serpentes/genética , Genômica
7.
Conserv Biol ; 37(4): e14069, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751969

RESUMO

Over the past 40 years, the climate has been changing and human disturbance has increased in the vast Qinghai-Tibet Plateau (QTP). These 2 factors are expected to affect the distribution of a large number of endemic vertebrate species. However, quantitative relationships between range shifts and climate change and human disturbance of these species in the QTP have rarely been evaluated. We used occurrence records of 19 terrestrial vertebrate species (birds, mammals, amphibians, and reptiles) occurring in the QTP from 1980 to 2020 to quantify the effects of climate change and anthropogenic impacts on the distribution of these 4 taxonomic groups and estimated species range changes in each species. The trend in distribution changes differed among the taxonomic groups, although, generally, ranges shifted to central QTP. Climate change contributed more to range variation than human disturbance (the sum of the 4 climatic variables contributed more than the sum of the 4 human disturbance variables for all 4 taxonomic groups). Suitable geographic range increased for most mammals, amphibians, and reptiles (+27.6%, +18.4%, and +27.8% on average, respectively), whereas for birds range decreased on average by 0.9%. Quantitative evidence for climate change and human disturbance associations with range changes for endemic vertebrate species in the QTP can provide useful insights into biodiversity conservation under changing environments.


En los últimos 40 años, el clima ha cambiado y las perturbaciones humanas han aumentado en la vasta meseta Qinghai-Tíbet (MQT). Se espera que estos dos factores afecten la distribución de un gran número de especies de vertebrados endémicos. Sin embargo, las relaciones cuantitativas entre los cambios del área de distribución y el cambio climático y las perturbaciones humanas en estas especies de la MQT han sido poco evaluadas. Utilizamos los registros de presencia de 19 especies de vertebrados terrestres (aves, mamíferos, anfibios y reptiles) de la MQT tomados entre 1980 y 2020 para cuantificar los efectos del cambio climático y los impactos antropogénicos sobre la distribución de estos cuatro grupos taxonómicos y estimar los cambios en el área de distribución de cada especie. La tendencia en los cambios de distribución difirió entre los grupos taxonómicos, aunque, en general, las áreas de distribución se desplazaron hacia el centro de la MQT. El cambio climático contribuyó más a la variación del área de distribución que las perturbaciones humanas (la suma de las cuatro variables climáticas contribuyó más que la suma de las cuatro variables de perturbaciones humanas para los cuatro grupos taxonómicos). El área de distribución geográfica adecuada aumentó para la mayoría de los mamíferos, anfibios y reptiles (+27.6%, +18.4% y +27.8% en promedio, respectivamente), mientras que para las aves disminuyó en promedio un 0.9%. Las pruebas cuantitativas de la asociación del cambio climático y las perturbaciones humanas con los cambios en el área de distribución de las especies vertebradas endémicas de la MQT pueden aportar información útil para la conservación de la biodiversidad en entornos cambiantes.


Assuntos
Efeitos Antropogênicos , Mudança Climática , Animais , Humanos , Tibet , Conservação dos Recursos Naturais , Vertebrados , Mamíferos
8.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077479

RESUMO

Anan's rock agama (Laudakia sacra) is a lizard species endemic to the harsh high-altitude environment of the Qinghai-Tibet Plateau, a region characterized by low oxygen tension and high ultraviolet (UV) radiation. To better understand the genetic mechanisms underlying highland adaptation of ectotherms, we assembled a 1.80-Gb L. sacra genome, which contained 284 contigs with an N50 of 20.19 Mb and a BUSCO score of 93.54%. Comparative genomic analysis indicated that mutations in certain genes, including HIF1A, TIE2, and NFAT family members and genes in the respiratory chain, may be common adaptations to hypoxia among high-altitude animals. Compared with lowland reptiles, MLIP showed a convergent mutation in L. sacra and the Tibetan hot-spring snake (Thermophis baileyi), which may affect their hypoxia adaptation. In L. sacra, several genes related to cardiovascular remodeling, erythropoiesis, oxidative phosphorylation, and DNA repair may also be tailored for adaptation to UV radiation and hypoxia. Of note, ERCC6 and MSH2, two genes associated with adaptation to UV radiation in T. baileyi, exhibited L. sacra-specific mutations that may affect peptide function. Thus, this study provides new insights into the potential mechanisms underpinning high-altitude adaptation in ectotherms and reveals certain genetic generalities for animals' survival on the plateau.


Assuntos
Altitude , Lagartos , Adaptação Fisiológica/genética , Animais , Hipóxia/genética , Sacro , Seleção Genética , Serpentes , Tibet
9.
Mol Biol Evol ; 37(6): 1744-1760, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077944

RESUMO

The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw's sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.


Assuntos
Adaptação Biológica , Evolução Molecular , Genoma , Hydrophiidae/genética , Animais , Organismos Aquáticos , Elementos de DNA Transponíveis , Feminino , Anotação de Sequência Molecular , Família Multigênica
10.
Proc Natl Acad Sci U S A ; 115(33): 8406-8411, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065117

RESUMO

Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake (Thermophis baileyi) and then compare its genome to the genomes of the other two species of Thermophis, as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair (FEN1) and response to hypoxia (EPAS1). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis).


Assuntos
Aclimatação/fisiologia , Altitude , Serpentes/genética , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Feminino , Endonucleases Flap/genética , Genoma , Hipóxia , Filogenia , Seleção Genética , Serpentes/fisiologia , Tibet , Raios Ultravioleta
11.
Mol Phylogenet Evol ; 121: 224-232, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28987637

RESUMO

Currently, the genus Kurixalus comprises 14 species distributed in Southern, Southeast and East Asia. Because of their relatively low dispersal capability and intolerance of seawater, this group is ideal for the study of terrestrial range evolution, especially that portion of its range that extends into the island archipelagos of Southern Asia. We assembled a large dataset of mitochondrial and nuclear genes, and estimated phylogeny by maximum likelihood and Bayesian methods, and we explored the history of each species via divergence-time estimation based on fossil-calibrations. A variety of ancestral-area reconstruction strategies were employed to estimate past changes of the species' geographical range, and to evaluate the impact of different abiotic barriers on range evolution. We found that frilled swamp treefrogs probably originated in Taiwan or South Vietnam in the Oligocene. Alternatively, the lineage leading to Kurixalus appendiculatus strongly supports a hypothesis of terrestrial connection between the Indian and Asian continents in the Oligocene. The outcome of both our divergence-time estimates and ancestral-area reconstruction suggests that the divergence between species from Indochina and Taiwan can probably be attributed to the opening of the South China Sea, approximately 33 million years ago. We could not find evidence for dispersal between mainland China and Taiwan Island. Formation of both Mekong and Red River valleys did not have any impact on Kurixalus species diversification. However, coincidence in timing of climate change and availability of plausible dispersal routes from the Oligocene to the middle Miocene, plausibly implied that Kurixalus diversification in Asia resulted from contemporaneous, climate-induced environmental upheaval (Late Oligocene Warming at 29 Ma; Mi-1 glaciation since 24.4-21.5 Ma; Mid-Miocene Climatic Optimum at 14 Ma), which alternatively opened and closed dispersal routes.


Assuntos
Anuros/classificação , Geografia , Filogenia , Áreas Alagadas , Animais , Ásia , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Fósseis , Fatores de Tempo
12.
BMC Evol Biol ; 16(1): 253, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27884104

RESUMO

BACKGROUND: In contrast to the Western Palearctic and Nearctic biogeographic regions, the phylogeography of Eastern-Palearctic terrestrial vertebrates has received relatively little attention. In East Asia, tectonic events, along with Pleistocene climatic conditions, likely affected species distribution and diversity, especially through their impact on sea levels and the consequent opening and closing of land-bridges between Eurasia and the Japanese Archipelago. To better understand these effects, we sequenced mitochondrial and nuclear markers to determine phylogeographic patterns in East-Asian tree frogs, with a particular focus on the widespread H. japonica. RESULTS: We document several cryptic lineages within the currently recognized H. japonica populations, including two main clades of Late Miocene divergence (~5 Mya). One occurs on the northeastern Japanese Archipelago (Honshu and Hokkaido) and the Russian Far-East islands (Kunashir and Sakhalin), and the second one inhabits the remaining range, comprising southwestern Japan, the Korean Peninsula, Transiberian China, Russia and Mongolia. Each clade further features strong allopatric Plio-Pleistocene subdivisions (~2-3 Mya), especially among continental and southwestern Japanese tree frog populations. Combined with paleo-climate-based distribution models, the molecular data allowed the identification of Pleistocene glacial refugia and continental routes of postglacial recolonization. Phylogenetic reconstructions further supported genetic homogeneity between the Korean H. suweonensis and Chinese H. immaculata, suggesting the former to be a relic population of the latter that arose when the Yellow Sea formed, at the end of the last glaciation. CONCLUSIONS: Patterns of divergence and diversity were likely triggered by Miocene tectonic activities and Quaternary climatic fluctuations (including glaciations), causing the formation and disappearance of land-bridges between the Japanese islands and the continent. Overall, this resulted in a ring-like diversification of H. japonica around the Sea of Japan. Our findings urge for important taxonomic revisions in East-Asian tree frogs. First, they support the synonymy of H. suweonensis (Kuramoto, 1980) and H. immaculata (Boettger, 1888). Second, the nominal H. japonica (Günther, 1859) represents at least two species: an eastern (new taxon A) on the northern Japanese and Russian Far East islands, and a southwestern species (n. t. B) on southern Japanese islands and possibly also forming continental populations. Third, these continental tree frogs may also represent an additional entity, previously described as H. stepheni Boulenger, 1888 (senior synonym of H. ussuriensis Nikolskii, 1918). A complete revision of this group requires further taxonomic and nomenclatural analyses, especially since it remains unclear to which taxon the species-epitheton japonica corresponds to.


Assuntos
Anuros/genética , Ilhas , Filogenia , Filogeografia , Animais , Sequência de Bases , DNA Mitocondrial/genética , Ásia Oriental , Variação Genética , Haplótipos/genética , Funções Verossimilhança
13.
Proc Natl Acad Sci U S A ; 110(9): 3441-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401521

RESUMO

The accretion of the Indian subcontinent to Eurasia triggered a massive faunal and floral exchange, with Gondwanan taxa entering into Asia and vice versa. The traditional view on the Indian-Asian collision assumes contact of the continental plates during the Early Eocene. Many biogeographic studies rely on this assumption. However, the exact mode and timing of this geological event is still under debate. Here we address, based on an extensive phylogenetic analysis of rhacophorid tree frogs, if there was already a Paleogene biogeographic link between Southeast Asia and India; in which direction faunal exchange occurred between India and Eurasia within the Rhacophoridae; and if the timing of the faunal exchange correlates with one of the recently suggested geological models. Rhacophorid tree frogs showed an early dispersal from India to Asia between 46 and 57 Ma, as reconstructed from the fossil record. During the Middle Eocene, however, faunal exchange ceased, followed by increase of rhacophorid dispersal events between Asia and the Indian subcontinent during the Oligocene that continued until the Middle Miocene. This corroborates recent geological models that argue for a much later final collision between the continental plates. We predict that the Oligocene faunal exchange between the Indian subcontinent and Asia, as shown here for rhacophorid frogs, also applies for other nonvolant organisms with an Indian-Asian distribution, and suggest that previous studies that deal with this faunal interchange should be carefully reinvestigated.


Assuntos
Anuros/fisiologia , Biodiversidade , Animais , Anuros/genética , Sudeste Asiático , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Bases de Dados Genéticas , Europa (Continente) , Fenômenos Geológicos , Índia , Filogenia , Fatores de Tempo
14.
Mol Phylogenet Evol ; 87: 80-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25765368

RESUMO

Based on an updated, time-calibrated phylogeny and applying biogeographical model testing and diversification analysis, we re-examined systematics and biogeography of the Holarctic treefrog genus Hyla with a focus on the East Asian species. We analyzed four mitochondrial genes (12S and 16S rRNA, tRNA(Leu), ND1) and one nuclear gene (POMC) for 192 samples representing 30 species of Hyla. Based on our results we suggest that H. ussuriensis is a synonym of H. japonica. Specimens from Sakhalin and Kunashir Islands might represent a cryptic species within H. japonica. We confirm earlier hypotheses that the genus Hyla originated during the Eocene to Early Oligocene and that Eurasian species originated from two independent dispersal events from North America via the Bering Land Bridge. Middle Eocene to Oligocene dispersal gave rise to the most recent common ancestor of the West Palearctic H. arborea-group and the East Palearctic, newly defined, H. chinensis-group. The Northeast Asian H. japonica-group resulted from a second wave of colonization from the Nearctic. A trans-Atlantic dispersal route could be excluded. Dispersal of the H. arborea-group to the western Palearctic coincides with the closure of the Turgai Strait at the end of the Oligocene. Diversification of Hyla decreased at the end of the Middle Miocene, possibly coinciding with the end of the Mid Miocene Climatic Optimum and the advent of cooler and drier climates in the Northern Hemisphere.


Assuntos
Anuros/classificação , Evolução Biológica , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Genes Mitocondriais , Modelos Genéticos , América do Norte , Filogeografia , Análise de Sequência de DNA
15.
Sci China Life Sci ; 66(10): 2399-2414, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256419

RESUMO

Limb loss shows recurrent phenotypic evolution across squamate lineages. Here, based on three de novo-assembled genomes of limbless lizards from different lineages, we showed that divergence of conserved non-coding elements (CNEs) played an important role in limb development. These CNEs were associated with genes required for limb initiation and outgrowth, and with regulatory signals in the early stage of limb development. Importantly, we identified the extensive existence of insertions and deletions (InDels) in the CNEs, with the numbers ranging from 111 to 756. Most of these CNEs with InDels were lineage-specific in the limbless squamates. Nearby genes of these InDel CNEs were important to early limb formation, such as Tbx4, Fgf10, and Gli3. Based on functional experiments, we found that nucleotide mutations and InDels both affected the regulatory function of the CNEs. Our study provides molecular evidence underlying limb loss in squamate reptiles from a developmental perspective and sheds light on the importance of regulatory element InDels in phenotypic evolution.


Assuntos
Genoma , Répteis , Animais , Répteis/genética , Fatores de Transcrição/genética , Evolução Molecular , Sequência Conservada/genética , Evolução Biológica
16.
Genome Biol ; 24(1): 46, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895044

RESUMO

BACKGROUND: Reptiles exhibit a wide variety of skin colors, which serve essential roles in survival and reproduction. However, the molecular basis of these conspicuous colors remains unresolved. RESULTS: We investigate color morph-enriched Asian vine snakes (Ahaetulla prasina), to explore the mechanism underpinning color variations. Transmission electron microscopy imaging and metabolomics analysis indicates that chromatophore morphology (mainly iridophores) is the main basis for differences in skin color. Additionally, we assemble a 1.77-Gb high-quality chromosome-anchored genome of the snake. Genome-wide association study and RNA sequencing reveal a conservative amino acid substitution (p.P20S) in SMARCE1, which may be involved in the regulation of chromatophore development initiated from neural crest cells. SMARCE1 knockdown in zebrafish and immunofluorescence verify the interactions among SMARCE1, iridophores, and tfec, which may determine color variations in the Asian vine snake. CONCLUSIONS: This study reveals the genetic associations of color variation in Asian vine snakes, providing insights and important resources for a deeper understanding of the molecular and genetic mechanisms related to reptilian coloration.


Assuntos
Cromatóforos , Estudo de Associação Genômica Ampla , Animais , Peixe-Zebra/genética , Pigmentação da Pele , Serpentes/genética , Cor , Proteínas de Peixe-Zebra , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
17.
Mol Ecol Resour ; 23(5): 1124-1141, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36924341

RESUMO

DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Humanos , Animais , Filogenia , Código de Barras de DNA Taxonômico/métodos , Serpentes/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética
18.
Front Genet ; 13: 825974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154285

RESUMO

Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.

19.
PeerJ ; 10: e12999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261821

RESUMO

Ecological niche modeling is a tool used to determine current potential species' distribution or habitat suitability models which can then be used to project suitable areas in time. Projections of suitability into past climates can identify locations of climate refugia, or areas with high climatic stability likely to contain the highest levels of genetic diversity and stable populations when climatic conditions are less suitable in other parts of the range. Modeling habitat suitability for closely related species in recent past can also reveal potential periods and regions of contact and possible admixture. In the east palearctic, there are five Dryophytes (Hylid treefrog) clades belonging to two groups: Dryophytes japonicus group: Clades A and B; and Dryophytes immaculatus group: Dryophytes immaculatus, Dryophytes flaviventris, and Dryophytes suweonensis. We used maximum entropy modeling to determine the suitable ranges of these five clades during the present and projected to the Last Glacial Maximum (LGM) and Last Interglacial (LIG) periods. We also calculated climatic stability for each clade to identify possible areas of climate refugia. Our models indicated suitable range expansion during the LGM for four clades with the exclusion of D. immaculatus. High climatic stability in our models corresponded to areas with the highest numbers of recorded occurrences in the present. The models produced here can additionally serve as baselines for models of suitability under climate change scenarios and indicate species ecological requirements.


Assuntos
Ecossistema , Modelos Teóricos , Animais , Filogeografia , Dinâmica Populacional , Anuros
20.
Innovation (Camb) ; 3(5): 100295, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36032194

RESUMO

Animals have evolved sophisticated temperature-sensing systems and mechanisms to detect and respond to ambient temperature changes. As a relict species endemic to the Qinghai-Tibet Plateau, hot-spring snake (Thermophis baileyi) survived the dramatic changes in climate that occurred during plateau uplift and ice ages, providing an excellent opportunity to explore the evolution of temperature sensation in ectotherms. Based on distributional information and behavioral experiments, we found that T. baileyi prefer hot-spring habitats and respond more quickly to warmth than other two snakes, suggesting that T. baileyi may evolve an efficient thermal-sensing system. Using high-quality chromosome-level assembly and comparative genomic analysis, we identified cold acclimation genes experiencing convergent acceleration in high-altitude lineages. We also discovered significant evolutionary changes in thermosensation- and thermoregulation-related genes, including the transient receptor potential (TRP) channels. Among these genes, TRPA1 exhibited three species-specific amino acid replacements, which differed from those found in infrared imaging snakes, implying different temperature-sensing molecular strategies. Based on laser-heating experiments, the T. baileyi-specific mutations in TRPA1 resulted in an increase in heat-induced opening probability and thermal sensitivity of the ion channels under the same degree of temperature stimulation, which may help the organism respond to temperature changes more quickly. These results provide insight into the genetic mechanisms underpinning the evolution of temperature-sensing strategies in ectotherms as well as genetic evidence of temperature acclimation in this group.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa