RESUMO
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismoRESUMO
In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.
Assuntos
Replicação do DNA , Humanos , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de ReplicaçãoRESUMO
Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.
Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , SimbioseRESUMO
The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.
Assuntos
Células T Matadoras Naturais , Serotonina , Serotonina/metabolismo , Lipídeos , Antígenos CD1d/metabolismoRESUMO
The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.
Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Interleucina-5/biossíntese , Macrófagos Alveolares/imunologia , Células Th2/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Humanos , Interleucina-5/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/imunologiaRESUMO
Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.
Assuntos
Ativinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Ativinas/genética , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Transdução de SinaisRESUMO
The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.
Assuntos
Células Enterocromafins/fisiologia , Interleucina-33/metabolismo , Intestinos/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Tricuríase/imunologia , Trichuris/fisiologia , Animais , Sinalização do Cálcio , Homeostase , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , PeristaltismoRESUMO
In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.
Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestruturaRESUMO
Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.
Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Pele , Têxteis , EletrodosRESUMO
Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.
RESUMO
Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.
Assuntos
Senescência Celular , Quitinases , Microglia , Neurônios Motores , Primatas , Medula Espinal , Animais , Humanos , Biomarcadores/metabolismo , Quitinases/metabolismo , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Primatas/metabolismo , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Medula Espinal/metabolismo , Medula Espinal/patologiaRESUMO
Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.
RESUMO
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.
RESUMO
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
RESUMO
The discovery of several electronic orders in kagome superconductors AV3Sb5 (A means K, Rb, Cs) provides a promising platform for exploring unprecedented emergent physics1-9. Under moderate pressure (<2.2 GPa), the triple-Q charge density wave (CDW) order is monotonically suppressed by pressure, while the superconductivity shows a two-dome-like behaviour, suggesting an unusual interplay between superconductivity and CDW order10,11. Given that time-reversal symmetry breaking and electronic nematicity have been revealed inside the triple-Q CDW phase8,9,12,13, understanding this CDW order and its interplay with superconductivity becomes one of the core questions in AV3Sb5 (refs. 3,5,6). Here, we report the evolution of CDW and superconductivity with pressure in CsV3Sb5 by 51V nuclear magnetic resonance measurements. An emergent CDW phase, ascribed to a possible stripe-like CDW order with a unidirectional 4a0 modulation, is observed between Pc1 â 0.58 GPa and Pc2 â 2.0 GPa, which explains the two-dome-like superconducting behaviour under pressure. Furthermore, the nuclear spin-lattice relaxation measurement reveals evidence for pressure-independent charge fluctuations above the CDW transition temperature and unconventional superconducting pairing above Pc2. Our results not only shed new light on the interplay of superconductivity and CDW, but also reveal new electronic correlation effects in kagome superconductors AV3Sb5.
RESUMO
Electronic nematicity, in which rotational symmetry is spontaneously broken by electronic degrees of freedom, has been demonstrated as a ubiquitous phenomenon in correlated quantum fluids including high-temperature superconductors and quantum Hall systems1,2. Notably, the electronic nematicity in high-temperature superconductors exhibits an intriguing entanglement with superconductivity, generating complicated superconducting pairing and intertwined electronic orders. Recently, an unusual competition between superconductivity and a charge-density-wave (CDW) order has been found in the AV3Sb5 (A = K, Rb, Cs) family with two-dimensional vanadium kagome nets3-8. Whether these phenomena involve electronic nematicity is still unknown. Here we report evidence for the existence of electronic nematicity in CsV3Sb5, using a combination of elastoresistance measurements, nuclear magnetic resonance (NMR) and scanning tunnelling microscopy/spectroscopy (STM/S). The temperature-dependent elastoresistance coefficient (m11 minus m12) and NMR spectra demonstrate that, besides a C2 structural distortion of the 2a0 × 2a0 supercell owing to out-of-plane modulation, considerable nematic fluctuations emerge immediately below the CDW transition (approximately 94 kelvin) and finally a nematic transition occurs below about 35 kelvin. The STM experiment directly visualizes the C2-structure-pinned long-range nematic order below the nematic transition temperature, suggesting a novel nematicity described by a three-state Potts model. Our findings indicate an intrinsic electronic nematicity in the normal state of CsV3Sb5, which sets a new paradigm for revealing the role of electronic nematicity on pairing mechanism in unconventional superconductors.
RESUMO
The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.
Assuntos
Angiomotinas , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/metabolismo , Proteínas dos Microfilamentos/metabolismo , Peptídeo Hidrolases , Peptídeos e Proteínas de Sinalização Intercelular/genéticaRESUMO
BACKGROUND: No treatment has surpassed platinum-based chemotherapy in improving overall survival in patients with previously untreated locally advanced or metastatic urothelial carcinoma. METHODS: We conducted a phase 3, global, open-label, randomized trial to compare the efficacy and safety of enfortumab vedotin and pembrolizumab with the efficacy and safety of platinum-based chemotherapy in patients with previously untreated locally advanced or metastatic urothelial carcinoma. Patients were randomly assigned in a 1:1 ratio to receive 3-week cycles of enfortumab vedotin (at a dose of 1.25 mg per kilogram of body weight intravenously on days 1 and 8) and pembrolizumab (at a dose of 200 mg intravenously on day 1) (enfortumab vedotin-pembrolizumab group) or gemcitabine and either cisplatin or carboplatin (determined on the basis of eligibility to receive cisplatin) (chemotherapy group). The primary end points were progression-free survival as assessed by blinded independent central review and overall survival. RESULTS: A total of 886 patients underwent randomization: 442 to the enfortumab vedotin-pembrolizumab group and 444 to the chemotherapy group. As of August 8, 2023, the median duration of follow-up for survival was 17.2 months. Progression-free survival was longer in the enfortumab vedotin-pembrolizumab group than in the chemotherapy group (median, 12.5 months vs. 6.3 months; hazard ratio for disease progression or death, 0.45; 95% confidence interval [CI], 0.38 to 0.54; P<0.001), as was overall survival (median, 31.5 months vs. 16.1 months; hazard ratio for death, 0.47; 95% CI, 0.38 to 0.58; P<0.001). The median number of cycles was 12 (range, 1 to 46) in the enfortumab vedotin-pembrolizumab group and 6 (range, 1 to 6) in the chemotherapy group. Treatment-related adverse events of grade 3 or higher occurred in 55.9% of the patients in the enfortumab vedotin-pembrolizumab group and in 69.5% of those in the chemotherapy group. CONCLUSIONS: Treatment with enfortumab vedotin and pembrolizumab resulted in significantly better outcomes than chemotherapy in patients with untreated locally advanced or metastatic urothelial carcinoma, with a safety profile consistent with that in previous reports. (Funded by Astellas Pharma US and others; EV-302 ClinicalTrials.gov number, NCT04223856.).
Assuntos
Anticorpos Monoclonais , Antineoplásicos , Carcinoma de Células de Transição , Neoplasias Urológicas , Humanos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/secundário , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Neoplasias da Bexiga Urinária , Gencitabina/administração & dosagem , Gencitabina/efeitos adversos , Gencitabina/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Carboplatina/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Análise de Sobrevida , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Neoplasias Urológicas/secundárioRESUMO
Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.
Assuntos
Fertilidade , Espermatogônias , Testículo , Animais , Masculino , Camundongos , Diferenciação Celular , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/metabolismo , Fertilidade/genética , Infertilidade Masculina/genética , Camundongos Knockout , Estabilidade de RNA/genética , Células de Sertoli/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Espermatogônias/citologia , Testículo/metabolismoRESUMO
The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.