Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ophthalmic Physiol Opt ; 35(2): 135-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25761579

RESUMO

BACKGROUND: Elevated levels of nitric oxide (NO(•) ), a pro-oxidant that has been associated with numerous retinal diseases, have been implicated in experimental glaucoma models. This study investigated the oxidative effects of sodium nitroprusside (SNP), a nitric oxide donor, on the retinal lipids and proteins and evaluated the potential protective effects of glutathione (GSH). METHODS: Porcine retinal homogenates were incubated with 0, 1, 2, 3, 4 and 5 µm SNP. Malondialdehyde (MDA) levels were assayed spectrophotometrically to quantify lipid peroxidation. Differential protein expressions of 3 µm SNP-treated retinal homogenates were compared with controls after the conduction of two-dimensional gel electrophoresis. Mass spectrometric data was used to identify proteins in NCBInr database. Furthermore, GSH was co-incubated with 3 µm SNP-treated retinal homogenates. MDA levels and protein expressions were compared with SNP-treated controls. RESULTS: SNP significantly increased retinal-MDA levels (p = 0.0002). 2-D gel electrophoresis images displayed a significant change in 13 protein spot expressions (p < 0.05). GSH suppressed SNP-induced MDA elevation (p < 0.0001) and selected protein changes (p < 0.05). SNP down-regulated paraoxonase/arylesterase 2 precursor (PON2), ß-actin and ß-tubulin; however, these effects were prevented by a co-incubation with GSH, as confirmed by Western blots. CONCLUSIONS: Nitric oxide induced lipid and protein changes in retinal tissues. The effects were partially reversed by co-incubation with GSH. Data from this study suggests that nitric oxide-induced retinal oxidative stress induces specific molecular changes. This may enable us to better understand the pathogenesis of glaucoma. Further studies are indicated to explore potential pharmacological applications of GSH in nitric oxide-related retinal diseases.


Assuntos
Proteínas do Olho/metabolismo , Glutationa/farmacologia , Peroxidação de Lipídeos , Óxido Nítrico/farmacologia , Estresse Oxidativo/fisiologia , Retina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Malondialdeído/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Retina/metabolismo , Suínos
2.
World J Emerg Med ; 5(4): 259-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25548598

RESUMO

BACKGROUND: Thoracostomy tube insertion is one of the common bedside procedures in emergency medicine and many acute specialties. Dislodgement of thoracostomy tube from the connection tube of chest drainage system is an important problem with potential complications such as contamination, infection and pneumothorax. Besides, mere loosening can also lead to malfunction. It is a common practice to tape the connection of the system. This study aimed to evaluate the materials and methods of connection of chest drain system to minimize drainage dislodgement. METHODS: We conducted an experimental study to assess the tightness of the connection with various taping materials and methods. We selected three commonly used adhesive materials (3M™ Transpore™ Medical tape, 3M™ Micropore™ Medical tape, 3M™ Soft Cloth Tape on Liner) and three different methods (cross method, straight method, nylon band) to secure the junction between the thoracostomy tube and the bi-conical adaptor in the drainage system. The measured outcome was the weight causing visible loosening of the junction between thoracotomy tube and the adaptor. RESULTS: For each taping material and taping method, 10 trials were performed. The median weight required to disconnect the junction is 26.22 lb for Transpore™, 31.29 lb for Micropore™ and 32.44 lb for Soft Cloth Tape on Liner. A smaller force was required to disconnect if Transpore™ is used (P<0.001). There was no statistical significant difference between Micropore™ and Soft Cloth Tape on Liner (P=0.98). The median disconnecting force is 32.44 lb for straight taping method, 40.55 lb for cross taping method and 21.15 lb for plastic band. The cross-taping method was the more secure method (P<0.0001 when compared with plastic band) (P=0.033 when compared with straight method). CONCLUSION: Cross-taping is the most secure method among the tested varieties in connecting the thoracostomy tube to the chest drainage system. Transpore™ is not a recommended material for thoracostomy tube taping.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa