Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 102(7): 731-740, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332262

RESUMO

The WHO (2021) Classification classified a group of pediatric-type high-grade gliomas as IDH wildtype, H3 wildtype but as of currently, they are characterized only by negative molecular features of IDH and H3. We recruited 35 cases of pediatric IDH wildtype and H3 wildtype hemispheric glioblastomas. We evaluated them with genome-wide methylation profiling, targeted sequencing, RNAseq, TERT promoter sequencing, and FISH. The median survival of the cohort was 27.6 months. With Capper et al.'s36 methylation groups as a map, the cases were found to be epigenetically heterogeneous and were clustered in proximity or overlay of methylation groups PXA-like (n = 8), LGG-like (n = 10), GBM_MYCN (n = 9), GBM_midline (n = 5), and GBM_RTKIII (n = 3). Histology of the tumors in these groups was not different from regular glioblastomas. Methylation groups were not associated with OS. We were unable to identify groups specifically characterized by EGFR or PDGFRA amplification as proposed by other authors. EGFR, PDGFRA, and MYCN amplifications were not correlated with OS. 4/9 cases of the GBM_MYCN cluster did not show MYCN amplification; the group was also enriched for EGFR amplification (4/9 cases) and the two biomarkers overlapped in two cases. Overall, PDGFRA amplification was found in only four cases and they were not restricted to any groups. Cases in proximity to GBM_midline were all hemispheric and showed loss of H3K27me3 staining. Fusion genes ALK/NTRK/ROS1/MET characteristic of infantile glioblastomas were not identified in 17 cases successfully sequenced. BRAF V600E was only found in the PXA group but CDKN2A deletion could be found in other methylation groups. PXA-like cases did not show PXA histological features similar to findings by other authors. No case showed TERT promoter mutation. Mutations of mismatch repair (MMR) genes were poor prognosticators in single (p ≤ 0.001) but not in multivariate analyses (p = 0.229). MGMT had no survival significance in this cohort. Of the other common biomarkers, only TP53 and ATRX mutations were significant poor prognosticators and only TP53 mutation was significant after multivariate analyses (p = 0.024). We conclude that IDH wildtype, H3 wildtype pediatric hemispheric glioblastomas are molecularly heterogeneous and in routine practice, TP53, ATRX, and MMR status could profitably be screened for risk stratification in laboratories without ready access to methylation profiling.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Criança , Receptores ErbB/genética , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
2.
Neuropathol Appl Neurobiol ; 48(4): e12802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191072

RESUMO

OBJECTIVE: We aimed to characterise glioblastomas of adolescents and young adults (AYAs) that were isocitrate dehydrogenase (IDH) wild type (wt) and H3wt. MATERIALS AND METHODS: Fifty such patients (aged 16-32) were studied by methylation profiling, targeted sequencing and targeted RNA-seq. RESULTS: Tumours predominantly clustered into three methylation classes according to the terminology of Capper et al. (2018): (anaplastic) pleomorphic xanthoastrocytoma (PXA) (21 cases), GBM_midline (15 cases) and glioblastoma RTK/mesenchymal (seven cases). Two cases clustered with ANA_PA, four cases with LGG classes and one with GBM_MYCN. Only fifteen cases reached a calibrated score >0.84 when the cases were uploaded to DKFZ Classifier. GBM_midline-clustered tumours had a poorer overall survival (OS) compared with the PXA-clustered tumours (p = 0.030). LGG-clustered cases had a significantly better survival than GBM_midline-clustered tumours and glioblastoma RTK/mesenchymal-clustered tumours. Only 13/21 (62%) of PXA-clustered cases were BRAF V600E mutated. Most GBM_midline-clustered cases were not located in the midline. GBM_midline-clustered cases were characterised by PDGFRA amplification/mutation (73.3%), mutations of mismatch repair genes (40.0%), and all showed H3K27me3 and EZH1P loss, and an unmethylated MGMT promoter. Across the whole cohort, MGMT promoter methylation and wt TERT promoter were favourable prognosticators. Mismatch repair gene mutations were poor prognosticators and together with methylation class and MGMT methylation, maintained their significance in multivariate analyses. BRAF mutation was a good prognosticator in the PXA-clustered tumours. CONCLUSION: Methylation profiling is a useful tool in the diagnosis and prognostication of AYA glioblastomas, and the methylation classes have distinct molecular characteristics. The usual molecular diagnostic criteria for adult IDHwt glioblastoma should be applied with caution within the AYA age group.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adolescente , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adulto Jovem
3.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33692446

RESUMO

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Análise Mutacional de DNA , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
4.
Acta Neuropathol ; 136(4): 641-655, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29948154

RESUMO

Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have much better prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization (FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplification was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Gradação de Tumores/métodos , Adolescente , Biomarcadores Tumorais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Masculino , Mutação/genética , Patologia Molecular , Pediatria , Prognóstico , Intervalo Livre de Progressão , Medição de Risco , Análise de Sobrevida , Resultado do Tratamento
5.
J Neurooncol ; 139(2): 307-322, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29761369

RESUMO

Although oligodendrogliomas appear histologically similar in adult and pediatric patients, the latter have only been rarely studied and most of those studies did not have long follow-up. We examined 55 oligodendroglial tumors from pediatric and teenage patients for their biomarkers with formalin-fixed paraffin-embedded tissues and studied their survival status. None of the tumors harbored 1p/19q codeletion or IDH mutation. Mutations in TERTp (4%), BRAF (11%), FGFR1 (3%) and H3F3A (5%), fusions of BRAF (8%) and FGFR1 (8%) were found sparingly and almost all in a mutually exclusive manner. Molecular events were exclusively found in tumors with classic oligodendroglial histology. Survival analysis showed remarkably excellent prognosis compared to the adult counterparts. 5-year overall survival was 95% in our cohort with median follow-up of 8.1 years and in nine patients with follow-up more than 10 years, the 10-year overall survival was 100%. The 5-year and 10-year progression-free survivals of our cohort were 89 and 77%, respectively. FGFR1 fusion seemed to confer a poor prognosis in pediatric oligodendrogliomas. Patients receiving adjuvant chemotherapy (p = 0.046) or harboring Grade II histology (p < 0.001) had longer interval to recurrence. Our study demonstrated the distinct indolent clinical course of pediatric and teenage oligodendrogliomas compared to the adult tumors. Molecular markers commonly seen in adult oligodendrogliomas and other pediatric low-grade gliomas were only rarely seen. Since there is no clinical or molecular evidence suggesting that pediatric "oligodendrogliomas" are the same as adult oligodendrogliomas albeit histologic similarity, a case can be made for their separation from adult oligodendrogliomas in the next WHO classification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/mortalidade , Recidiva Local de Neoplasia/mortalidade , Oligodendroglioma/mortalidade , Adolescente , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Oligodendroglioma/tratamento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Prognóstico , Taxa de Sobrevida , Adulto Jovem
6.
Lab Invest ; 97(8): 946-961, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28504687

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in childhood. At present, there is no well-established targeted drug for majority of patients. The kinesin family member 14 (KIF14) is a novel oncogene located on chromosome 1q and is dysregulated in multiple cancers. The objectives of this study were to evaluate KIF14 expression and chromosome 1q copy number in MB, and to delineate its biological functions in MB pathogenesis. By quantitative RT-PCR and immunohistochemistry, we found KIF14 was overexpressed in MB. Increased KIF14 expression at protein level was strongly associated with shorter progression-free survival (P=0.0063) and overall survival (P=0.0083). Fluorescence in situ hybridization (FISH) analysis confirmed genomic gain of chromosome 1q in 17/93 (18.3%) of MB. Combined genetic and immunohistochemical analyses revealed that 76.5% of MB with 1q gain showed consistent overexpression of KIF14, and a tight link between chromosome 1q gain and KIF14 overexpression (P=0.03). Transient, siRNAs-mediated downregulation of KIF14 suppressed cell proliferation and induced apoptosis in two MB cell lines. Stably KIF14 knockdown by shRNAs inhibited cell viability, colony formation, migration and invasion, and tumor sphere formation in MB cells. We conclude that KIF14 is dysregulated in MB and is an adverse prognostic factor for survival. Furthermore, KIF14 is part of MB biology and is a potential therapeutic target for MB.


Assuntos
Apoptose/genética , Regulação para Baixo/genética , Cinesinas/genética , Cinesinas/metabolismo , Meduloblastoma/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Adolescente , Adulto , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Cinesinas/análise , Masculino , Meduloblastoma/química , Proteínas Oncogênicas/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Adulto Jovem
8.
Lancet Oncol ; 17(4): 484-495, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26976201

RESUMO

BACKGROUND: Patients with incomplete surgical resection of medulloblastoma are controversially regarded as having a marker of high-risk disease, which leads to patients undergoing aggressive surgical resections, so-called second-look surgeries, and intensified chemoradiotherapy. All previous studies assessing the clinical importance of extent of resection have not accounted for molecular subgroup. We analysed the prognostic value of extent of resection in a subgroup-specific manner. METHODS: We retrospectively identified patients who had a histological diagnosis of medulloblastoma and complete data about extent of resection and survival from centres participating in the Medulloblastoma Advanced Genomics International Consortium. We collected from resections done between April, 1997, and February, 2013, at 35 international institutions. We established medulloblastoma subgroup affiliation by gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. We classified extent of resection on the basis of postoperative imaging as gross total resection (no residual tumour), near-total resection (<1·5 cm(2) tumour remaining), or sub-total resection (≥1·5 cm(2) tumour remaining). We did multivariable analyses of overall survival and progression-free survival using the variables molecular subgroup (WNT, SHH, group 4, and group 3), age (<3 vs ≥3 years old), metastatic status (metastases vs no metastases), geographical location of therapy (North America/Australia vs rest of the world), receipt of chemotherapy (yes vs no) and receipt of craniospinal irradiation (<30 Gy or >30 Gy vs no craniospinal irradiation). The primary analysis outcome was the effect of extent of resection by molecular subgroup and the effects of other clinical variables on overall and progression-free survival. FINDINGS: We included 787 patients with medulloblastoma (86 with WNT tumours, 242 with SHH tumours, 163 with group 3 tumours, and 296 with group 4 tumours) in our multivariable Cox models of progression-free and overall survival. We found that the prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. We identified a progression-free survival benefit for gross total resection over sub-total resection (hazard ratio [HR] 1·45, 95% CI 1·07-1·96, p=0·16) but no overall survival benefit (HR 1·23, 0·87-1·72, p=0·24). We saw no progression-free survival or overall survival benefit for gross total resection compared with near-total resection (HR 1·05, 0·71-1·53, p=0·8158 for progression-free survival and HR 1·14, 0·75-1·72, p=0·55 for overall survival). No significant survival benefit existed for greater extent of resection for patients with WNT, SHH, or group 3 tumours (HR 1·03, 0·67-1·58, p=0·89 for sub-total resection vs gross total resection). For patients with group 4 tumours, gross total resection conferred a benefit to progression-free survival compared with sub-total resection (HR 1·97, 1·22-3·17, p=0·0056), especially for those with metastatic disease (HR 2·22, 1·00-4·93, p=0·050). However, gross total resection had no effect on overall survival compared with sub-total resection in patients with group 4 tumours (HR 1·67, 0·93-2·99, p=0·084). INTERPRETATION: The prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. Although maximum safe surgical resection should remain the standard of care, surgical removal of small residual portions of medulloblastoma is not recommended when the likelihood of neurological morbidity is high because there is no definitive benefit to gross total resection compared with near-total resection. FUNDING: Canadian Cancer Society Research Institute, Terry Fox Research Institute, Canadian Institutes of Health Research, National Institutes of Health, Pediatric Brain Tumor Foundation, and the Garron Family Chair in Childhood Cancer Research.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/cirurgia , Meduloblastoma/classificação , Meduloblastoma/cirurgia , Prognóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Canadá , Criança , Pré-Escolar , Terapia Combinada , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Estudos Retrospectivos
10.
Mod Pathol ; 28(2): 177-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25081751

RESUMO

Recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) have been found in various cancers including diffuse gliomas. Mutations lead to TERT upregulation and are associated with aggressive clinical behavior in glioblastomas. However, the clinical significance of TERT promoter mutations in lower-grade gliomas remains undetermined. The aim of this study is to evaluate the status of TERT promoter and the respective prognostic significance in a cohort of 237 lower-grade gliomas comprising grades II and III astrocytomas, oligodendrogliomas, and oligoastrocytomas. Mutually exclusive mutations in TERT promoter, C228T and C250T, were identified in 16/105 (15%) diffuse astrocytomas, 16/63 (25%) anaplastic astrocytomas, 13/18 (72%) oligodendrogliomas, 3/3 (100%) anaplastic oligodendrogliomas, 17/45 (38%) oligoastrocytomas, and 2/3 (67%) anaplastic oligoastrocytomas. Mutations co-occurred with 1p/19q codeletion (P<0.001) and are associated with oligodendroglial histology (P<0.001). Kaplan-Meier's survival analysis showed that TERT promoter mutation (P=0.037), Isocitrate dehydrogenase (IDH) mutation (P<0.001), and 1p/19q codeletion (P<0.001) were associated with favorable overall survival (OS). In the subset of 116 IDH-mutated lower-grade gliomas lacking 1p/19q codeletion, 19 TERT promoter-mutated tumors exhibited longer progression-free survival (PFS) (P=0.027) and OS (P=0.004). Consistent with this observation, in the subset of 97 IDH-mutated astrocytomas, 14 TERT promoter-mutated tumors showed longer PFS (P=0.001) and OS (P=0.001). In contrast, among the subset of 74 IDH wild-type lower-grade gliomas with intact 1p/19q, TERT promoter mutation was associated with shorter PFS (P=0.001) and OS (P=0.001). Similarly, in the subset of 65 IDH wild-type astrocytomas, 16 TERT promoter-mutated tumors exhibited unfavorable PFS (P=0.007) and OS (P=0.008). Our results indicate that when combined with IDH status, TERT promoter mutation contributes to prognostic subgroups of lower-grade astrocytic tumors or 1p/19q intact lower-grade gliomas and this may further refine future molecular classification of lower-grade gliomas.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Regiões Promotoras Genéticas , Telomerase/genética , Adulto , Neoplasias Encefálicas/mortalidade , Análise Mutacional de DNA , Intervalo Livre de Doença , Feminino , Glioma/mortalidade , Humanos , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Regiões Promotoras Genéticas/genética , Modelos de Riscos Proporcionais
11.
Neuropathol Appl Neurobiol ; 41(2): 145-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25041637

RESUMO

AIMS: MicroRNAs (miRNAs) are an abundant group of small non-coding RNAs that have been implicated in tumorigenesis. They regulate expression of target genes by complementary base pairing. The purposes of this study were to delineate miR-106b expression in medulloblastoma (MB) and to explore its functional contributions to MB pathogenesis. METHODS: We analysed expression of miR-106b in 32 MB samples by quantitative RT-PCR. We applied gain- and loss-of-function strategies to delineate the functional roles of miR-106b in MB. Luciferase reporter assay was conducted to confirm target gene of miR-106b. RESULTS: Expression of miR-106b was overexpressed in MB, and was significantly associated with its host gene MCM7 (P = 0.020). Transfection of miR-106b inhibitor in MB cell lines markedly reduced cell proliferation, migration and invasion potential, and tumour sphere formation. Cell cycle analysis indicated that miR-106b inhibition induced G1 arrest and apoptosis. The cell cycle regulators, p21 and cyclin D1, and apoptotic marker cleaved PARP were differentially expressed in miR-106b inhibitor-transfected cells. PTEN was identified as a direct target gene of miR-106b. Luciferase reporter assay confirmed miR-106b directly interacted with the 3' UTR of PTEN. We found miR-106b directly targeted PTEN at transcriptional and translational levels. Immunohistochemistry revealed a trend between PTEN and miR-106b in MB tumours (P = 0.07). CONCLUSIONS: These data suggested the upregulation of miR-106b in MB and the involvement of miR-106b in MB biology.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/genética , MicroRNAs/biossíntese , PTEN Fosfo-Hidrolase/metabolismo , Adolescente , Adulto , Western Blotting , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Criança , Feminino , Humanos , Imuno-Histoquímica , Masculino , Meduloblastoma/metabolismo , MicroRNAs/análise , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Regulação para Cima , Adulto Jovem
12.
Mod Pathol ; 27(3): 332-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24030748

RESUMO

Combined deletion of chromosomes 1p and 19q is a prognostic marker in oligodendroglial tumors. Recent studies in oligodendroglial tumors have unveiled recurrent mutations of CIC (homolog of Drosophila capicua) and FUBP1 (far upstream element binding protein 1) that are located on 19q13 and 1p31, respectively. However, the impact of CIC and FUBP1 mutations on their protein expressions has not been examined. The aims of this study were to correlate the expression patterns of CIC and FUBP1 with their mutation profiles and to evaluate the clinical relevance of these molecular markers in 55 oligodendroglial tumors diagnosed in 47 adult patients. Using direct sequencing, somatic mutations of CIC and FUBP1 were identified in 47% (22/47) and 16% (7/45) of oligodendroglial tumors, respectively. Immunohistochemical analysis revealed loss of CIC or FUBP1 protein expression in 36% (20/55) and 16% (9/55) of oligodendroglial tumors examined. Somatic mutation was significantly associated with absent protein expression for both genes (CIC, P=0.01; FUBP1, P=0.00001). Four tumors with undetectable CIC mutations exhibited absent CIC expression, suggesting that CIC inactivation could be mediated by mechanisms other than mutations and genomic loss. Univariate survival analysis revealed that 1p/19q codeletion was significantly associated with overall survival (P=0.05). Loss of CIC expression was significantly correlated with shorter progression-free survival (P=0.03), whereas CIC alteration (mutation or null expression) with worse overall survival (P=0.05). Absent FUBP1 expression was linked with unfavorable progression-free survival (P=0.02) and overall survival (P=0.01). In 16 tumors with 1p/19q codeletion, CIC mutation was associated with unfavorable survival (P=0.01). There was a correlation between lack of CIC or FUBP1 expression and poor progression-free survival (P=0.004; P=0.0003). No molecular markers showed association with survival in oligodendroglial tumors lacking 1p/19q codeletion. We conclude that absent CIC and FUBP1 expressions are potential markers of shorter time to recurrence and CIC mutation a potential marker of worse prognosis, especially in tumors carrying 1p/19q codeletion.


Assuntos
Neoplasias Encefálicas/patologia , DNA Helicases/biossíntese , Proteínas de Ligação a DNA/biossíntese , Recidiva Local de Neoplasia/metabolismo , Oligodendroglioma/patologia , Proteínas Repressoras/biossíntese , Adulto , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética , DNA Helicases/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Proteínas de Ligação a RNA , Proteínas Repressoras/genética
13.
Cancers (Basel) ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201659

RESUMO

Pediatric high-grade gliomas (HGG) of the cerebellum are rare, and only a few cases have been documented in detail in the literature. A major differential diagnosis for poorly differentiated tumors in the cerebellum in children is medulloblastoma. In this study, we described the histological and molecular features of a series of five pediatric high-grade gliomas of the cerebellum. They actually showed histological and immunohistochemical features that overlapped with those of medulloblastomas and achieved high scores in NanoString-based medulloblastoma diagnostic assay. Methylation profiling demonstrated these tumors were heterogeneous epigenetically, clustering to GBM_MID, DMG_K27, and GBM_RTKIII methylation classes. MYCN amplification was present in one case, and PDGFRA amplification in another two cases. Interestingly, target sequencing showed that all tumors carried TP53 mutations. Our results highlight that pediatric high-grade gliomas of the cerebellum can mimic medulloblastomas at histological and transcriptomic levels. Our report adds to the rare number of cases in the literature of cerebellar HGGs in children. We recommend the use of both methylation array and TP53 screening in the differential diagnoses of poorly differentiated embryonal-like tumors of the cerebellum.

14.
Cancers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730692

RESUMO

Pediatric brain tumors are often noted to be different from their adult counterparts in terms of molecular features. Primary CNS lymphomas (PCNSLs) are mostly found in elderly adults and are uncommon in children and teenagers. There has only been scanty information about the molecular features of PCNSLs at a young age. We examined PCNSLs in 34 young patients aged between 7 and 39 years for gene rearrangements of BCl2, BCL6, CCND1, IRF4, IGH, IGL, IGK, and MYC, homozygous deletions (HD) of CDKN2A, and HLA by FISH. Sequencing was performed using WES, panel target sequencing, or Sanger sequencing due to the small amount of available tissues. The median OS was 97.5 months and longer than that for older patients with PCNSLs. Overall, only 14 instances of gene rearrangement were found (5%), and patients with any gene rearrangement were significantly older (p = 0.029). CDKN2A HD was associated with a shorter OS (p < 0.001). Only 10/31 (32%) showed MYD88 mutations, which were not prognostically significant, and only three of them were L265P mutations. CARD11 mutations were found in 8/24 (33%) cases only. Immunophenotypically, the cases were predominantly GCB, in contrast to older adults (61%). In summary, we showed that molecular findings identified in the PCNSLs of the older patients were only sparingly present in pediatric and young adult patients.

15.
Brain Pathol ; 33(3): e13120, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36167400

RESUMO

Recurrence is a major complication of some meningiomas. Although there were many studies on biomarkers associated with higher grades or increased aggressiveness, few studies specifically examined longitudinal samples of primary meningiomas and recurrences from the same patients for molecular life history. We studied 99 primary and recurrent meningiomas from 42 patients by FISH for 22q, 1q, 1p, 3p, 5q, 6q, 10p, 10q, 14q, 18q, CDKN2A/B homozygous deletion, ALT (Alternative Lengthening of Telomere), TERT re-arrangement, targeted sequencing and TERTp sequencing. Although NF2 mutation and 22q were well known to be aetiological events in meningiomas, we found that in these paired meningiomas, combining the two events resulted in an NF2/22q group (57 tumors from 25 patients) which were almost mutually exclusive with those cases without these two changes (42 tumors from 17 patients) for NF2/22q. No other molecular changes were totally unique to NF2/22q or non-NF2/22q tumors. For molecular evolution, NF2/22q meningiomas had higher cytogenetic abnormalities than non-NF2/22q meningiomas (p = 0.003). Most of the cytogenetic changes in NF2/22q meningiomas were present from the outset whereas for non-NF2/22q meningiomas, cytogenetic events were uncommon in the primary tumors and most were acquired in recurrences. For non-NF2/22q tumors, CDKN2A/B homozygous deletion, 1q gain, 18p loss, 3p loss, and ALT were preferentially found in recurrences. Mutations were largely conserved between primary and recurrent tumors. Phylogenetic trees showed 11/11 patients with multiple recurrent tumors had a conserved evolutionary pattern. We conclude that for molecular life history, NF2 and 22q should be regarded as a group. NF2/22q recurring meningiomas showed more cytogenetic abnormalities in the primary tumors, whereas non-NF2/22q meningiomas showed CDKN2A/B deletion and other cytogenetic abnormalities and ALT at recurrences. Although chromosome 1p loss is a known poor prognostic marker in meningiomas, it was also associated with a shorter TBR (time between resection) in this cohort (p = 0.002).


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Homozigoto , Filogenia , Deleção Cromossômica , Aberrações Cromossômicas
16.
Front Oncol ; 12: 839302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558510

RESUMO

Advanced genomic techniques have now been incorporated into diagnostic practice in neuro-oncology in the literature. However, these assays are expensive and time-consuming and demand bioinformatics expertise for data interpretation. In contrast, single-gene tests can be run much more cheaply, with a short turnaround time, and are available in general pathology laboratories. The objective of this study was to establish a molecular grading scheme for adult gliomas using combinations of commonly available single-gene tests. We retrospectively evaluated molecular diagnostic data of 1,275 cases of adult diffuse gliomas from three institutions where we were testing for IDH1/2 mutation, TERTp mutation, 1p19q codeletion, EGFR amplification, 10q deletion, BRAF V600E, and H3 mutations liberally in our regular diagnostic workup. We found that a molecular grading scheme of Group 1 (1p19q codeleted, IDH mutant), Group 2 (IDH mutant, 1p19q non-deleted, TERT mutant), Group 3 (IDH mutant, 1p19q non-deleted, TERT wild type), Group 4 (IDH wild type, BRAF mutant), Group 5 (IDH wild type, BRAF wild type and not possessing the criteria of Group 6), and Group 6 (IDH wild type, and any one of TERT mutant, EGFR amplification, 10q deletion, or H3 mutant) could significantly stratify this large cohort of gliomas for risk. A total of 1,028 (80.6%) cases were thus classifiable with sufficient molecular data. There were 270 cases of molecular Group 1, 59 cases of molecular Group 2, 248 cases of molecular Group 3, 27 cases of molecular Group 4, 117 cases of molecular Group 5, and 307 cases of molecular Group 6. The molecular groups were independent prognosticators by multivariate analyses and in specific instances, superseded conventional histological grades. We were also able to validate the usefulness of the Groups with a cohort retrieved from The Cancer Genome Atlas (TCGA) where similar molecular tests were liberally available. We conclude that a single-gene molecular stratification system, useful for fine prognostication, is feasible and can be adopted by a general pathology laboratory.

17.
Brain Pathol ; 32(6): e13107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815721

RESUMO

Telomerase reverse transcriptase (TERT) promoter (pTERT) mutation has often been described as a late event in gliomagenesis and it has been suggested as a prognostic biomarker in gliomas other than 1p19q codeleted tumors. However, the characteristics of isocitrate dehydrogenase (IDH) wild type (wt) (IDHwt), pTERTwt glioblastomas are not well known. We recruited 72 adult IDHwt, pTERTwt glioblastomas and performed methylation profiling, targeted sequencing, and fluorescence in situ hybridization (FISH) for TERT structural rearrangement and ALT (alternative lengthening of telomeres). There was no significant difference in overall survival (OS) between our cohort and a the Cancer Genome Atlas (TCGA) cohort of IDHwt, pTERT mutant (mut) glioblastomas, suggesting that pTERT mutation on its own is not a prognostic factor among IDHwt glioblastomas. Epigenetically, the tumors clustered into classic-like (11%), mesenchymal-like (32%), and LGm6-glioblastoma (GBM) (57%), the latter far exceeding the corresponding proportion seen in the TCGA cohort of IDHwt, pTERTmut glioblastomas. LGm6-GBM-clustered tumors were enriched for platelet derived growth factor receptor alpha (PDGFRA) amplification or mutation (p = 0.008), and contained far fewer epidermal growth factor receptor (EGFR) amplification (p < 0.01), 10p loss (p = 0.001) and 10q loss (p < 0.001) compared with cases not clustered to this group. LGm6-GBM cases predominantly showed ALT (p = 0.038). In the whole cohort, only 35% cases showed EGFR amplification and no case showed combined chromosome +7/-10. Since the cases were already pTERTwt, so the three molecular properties of EGFR amplification, +7/-10, and pTERT mutation may not cover all IDHwt glioblastomas. Instead, EGFR and PDGFRA amplifications covered 67% and together with their mutations covered 71% of cases of this cohort. Homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A)/B was associated with a worse OS (p = 0.031) and was an independent prognosticator in multivariate analysis (p = 0.032). In conclusion, adult IDHwt, pTERTwt glioblastomas show epigenetic clustering different from IDHwt, pTERTmut glioblastomas, and IDHwt glioblastomas which are pTERTwt may however not show EGFR amplification or +7/-10 in a significant proportion of cases. CDKN2A/B deletion is a poor prognostic biomarker in this group.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Telomerase , Humanos , Isocitrato Desidrogenase/genética , Glioblastoma/genética , Glioblastoma/patologia , Homozigoto , Hibridização in Situ Fluorescente , Neoplasias Encefálicas/patologia , Deleção de Sequência , Telomerase/genética , Mutação/genética , Receptores ErbB/genética , Biomarcadores , Prognóstico
18.
Clin Neurol Neurosurg ; 208: 106882, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34428613

RESUMO

The diagnostic role of Isocitrate Dehydrogenase (IDH) mutation status in adult lower grade astrocytomas was first formally presented within the WHO Classification of Tumours of the Central Nervous System (2016). IDH-mutant astrocytomas are not as common as IDH-wildtype astrocytomas but are of better prognosis. Our previous study provided an evident that IDH-mutant lower grade astrocytomas is not a homogeneous group and could be further stratified by PDGFRA amplification, CDK4 amplification and CDKN2A deletion. In this study, we detected the expressions of DNA mismatch repair (MMR) proteins (PMS2, MLH1, MSH2, MSH6) and PD-L1 by immunohistochemistry in 147 IDH-mutant lower grade astrocytomas and explored their clinical relevance. The loss of was identified in 28.6%, 1.4%, 8.8% and 13.6%, respectively. PD-L1 expression was detected in 1.4% of this cohort. Survival analysis revealed that loss of PMS2 was correlated with shorter OS (p < 0.001) and PFS (p = 0.005). Loss of PMS2 or MLH1 was associated with shorter OS (p < 0.001) and PFS (p = 0.008). In IDH-mutant lower grade astrocytomas without CDKN2A deletion, loss of PMS2 was associated with poorer OS (p < 0.001) and PFS (p = 0.001). Furthermore, among IDH-mutant lower grade astrocytomas lacking the three biomarkers (PDGFRA, CDK4 and CDKN2A), loss of PMS2 was also associated with a poorer OS (p < 0.001) and PFS (p = 0.003). Our data illustrated the potential application of MMR genes in stratification of IDH-mutant lower grade astrocytomas without PDGFRA, CDK4 and CDKN2A copy number alterations.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Adulto , Astrocitoma/metabolismo , Astrocitoma/mortalidade , Astrocitoma/patologia , Biomarcadores Tumorais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Humanos , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Mutação , Prognóstico , Taxa de Sobrevida
19.
Neurooncol Adv ; 2(1): vdaa079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760911

RESUMO

BACKGROUND: The determination of molecular subgroups-wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4-of medulloblastomas is very important for prognostication and risk-adaptive treatment strategies. Due to the rare disease characteristics of medulloblastoma, we designed a unique multitask framework for the few-shot scenario to achieve noninvasive molecular subgrouping with high accuracy. METHODS: We introduced a multitask technique based on mask regional convolutional neural network (Mask-RCNN). By effectively utilizing the comprehensive information including genotyping, tumor mask, and prognosis, multitask technique, on the one hand, realized multi-purpose modeling and simultaneously, on the other hand, promoted the accuracy of the molecular subgrouping. One hundred and thirteen medulloblastoma cases were collected from 4 hospitals during the 8-year period in the retrospective study, which were divided into 3-fold cross-validation cohorts (N = 74) from 2 hospitals and independent testing cohort (N = 39) from the other 2 hospitals. Comparative experiments of different auxiliary tasks were designed to illustrate the effect of multitasking in molecular subgrouping. RESULTS: Compared to the single-task framework, the multitask framework that combined 3 tasks increased the average accuracy of molecular subgrouping from 0.84 to 0.93 in cross-validation and from 0.79 to 0.85 in independent testing. The average area under the receiver operating characteristic curves (AUCs) of molecular subgrouping were 0.97 in cross-validation and 0.92 in independent testing. The average AUCs of prognostication also reached to 0.88 in cross-validation and 0.79 in independent testing. The tumor segmentation results achieved the Dice coefficient of 0.90 in both cohorts. CONCLUSIONS: The multitask Mask-RCNN is an effective method for the molecular subgrouping and prognostication of medulloblastomas with high accuracy in few-shot learning.

20.
Front Oncol ; 10: 558162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117690

RESUMO

The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa