RESUMO
In photocatalysis, reducing the exciton binding energy and boosting the conversion of excitons into free charge carriers are vital to enhance photocatalytic activity. This work presents a facile strategy of engineering Pt single atoms on a 2D hydrazone-based covalent organic framework (TCOF) to promote H2 production coupled with selective oxidation of benzylamine. The optimised TCOF-Pt SA photocatalyst with 3 wt% Pt single atom exhibited superior performance to TCOF and TCOF-supported Pt nanoparticle catalysts. The production rates of H2 and N-benzylidenebenzylamine over TCOF-Pt SA3 are 12.6 and 10.9 times higher than those over TCOF, respectively. Empirical characterisation and theoretical simulation showed that the atomically dispersed Pt is stabilised on the TCOF support through the coordinated N1 -Pt-C2 sites, thereby induing the local polarization and improving the dielectric constant to reach the low exciton binding energy. These phenomena led to the promotion of exciton dissociation into electrons and holes and the acceleration of the separation and transport of photoexcited charge carriers from bulk to the surface. This work provides new insights into the regulation of exciton effect for the design of advanced polymer photocatalysts.
RESUMO
Supramolecular systems consisting of covalent organic frameworks (COFs) and Ni complex are designed for robust photocatalytic reduction of CO2 . Multiple heteroatom-hydrogen bonding between the COF and Ni complex is identified to play a decisive role in the photoexcited electron transfer across the liquid-solid interface. The diminution of steric groups on COF or metal complex can optimize catalytic performance, which is more attributable to the enhanced hydrogen-bond interaction rather than their intrinsic activity. The photosystem with relatively strong strength of hydrogen bonds exhibits remarkable photocatalytic CO2 -to-CO conversion, far superior to photosystems with supported atomic Ni or metal complex alone in the absence of hydrogen-bond effect. Such heteroatom-hydrogen bonds bridging electron transport pathway confers supramolecular system with high photocatalytic performance, providing an avenue to rationally design efficient and steadily available photosystems.
RESUMO
The donor-acceptor-type covalent organic frameworks (COFs) have recently gained increasing interest in photocatalysis, but the photoinduced electron-transfer regimes in the COFs are underexplored. Herein, we demonstrate a designed porphyrinic COF possessing a donor-acceptor structure together with its photocatalytic performance in aerobic coupling of primary amines. The COF could be photoexcited by the full range of visible light to generate electron-hole pairs that could be separated by donor-acceptor pairs. Electron transfer as the mechanism of the reaction from anthracene unit to porphyrin unit was revealed by natural transition orbitals analyses. The electrons migrate to the adsorbed O2 to generate reactive oxidative species. The COF displays remarkable photocatalytic activities in the coupling of amines to imines, which can be explained mainly by the sufficient charge separation and mobility, benefiting from the donor-acceptor pairs in the COF and their interactions to the reactants and intermediates.
RESUMO
BACKGROUND: China has not yet established a national surveillance network such as NHSN from America, so there is still no large-scale investigations on central line-associated bloodstream infection (CLABSI) incidence. Several retrospective studies in China reported that the incidence of CLABSI varied due to inconsistent diagnostic criteria. We performed a nationwide survey to investigate the utilization rate of central venous catheters (CVCs) and the incidence of CLABSI in ICUs of different areas of China. METHODS: This is a prospective multi-center study. Patients admitted to ICUs with the use of CVCs between January 1, 2014 and December 31, 2018 were enrolled in this study. Hospitals were given the definition of catheter-related bloodstream infection as: a laboratory-confirmed bloodstream infection where CVC was in place on the date of event or the day before. The characteristics of patients, information of catheterization, implementation rates of precautions, and CLABSIs were collected. The statistical analysis was performed by SPSS 25.0 software and website of Open Source Epidemiologic Statistics for Public Health. RESULTS: A total of 38,212 patients and 466,585 catheter days were involved in surveillance. The average CLABSI incidence in a thousand catheter days was 1.50, the lowest incidence unit was in pediatric ICU (0/1000 catheter days), and the lowest incidence area was in Northeast China (0.77/1000 catheter days), while the highest incidence unit was in cardiac ICU (2.48/1000 catheter days) and the highest incidence area was in Eastern China (1.62/1000 catheter days). The average utilization rate of CVC was 42.85%, the lowest utilization rate was in pediatric ICU (5.85%) and in Central China (38.05%), while the highest utilization rate was in surgical ICU (64.92%) and in Western China (51.57%). Among the 702 CLABSI cases reported, a total of 735 strains of pathogens were cultured. Staphylococcus spp. was the most common organism isolated (27.07%), followed by Enterobacteriaceae (22.31%). The implementation rates of all precautions showed an upward trend during the study period (P ≤ 0.001). CONCLUSION: The average incidence of CLABSI in ICUs in China is 1.5/1000 catheter days, similar to the rates reported in developed countries but lower than previous reports in China. CLABSI incidence showed regional differences in China. It is necessary to implement targeted surveillance of CLABSI cases by using standardized CLABSI surveillance definitions and methodologies.
Assuntos
Infecções Relacionadas a Cateter , Sepse , Infecções Relacionadas a Cateter/epidemiologia , Criança , Humanos , Unidades de Terapia Intensiva , Estudos Prospectivos , Estudos Retrospectivos , Sepse/epidemiologiaRESUMO
Facile fabrication of nanocatalysts consisting of metal nanoparticles (NPs) anchored on a functional support is highly desirable, yet remains challenging. Covalent organic frameworks (COFs) provide an emerging materials platform for structural control and functional design. Here, a facile one-pot in situ reduction approach is demonstrated for the encapsulation of small Pd NPs into the shell of COF-derived hollow polyamine spheres (Pd@H-PPA). In the one-pot synthetic process, the nucleation and growth of Pd NPs in the cavities of the porous shell take place simultaneously with the reduction of imine linkages to secondary amine groups. Pd@H-PPA shows a significantly enhanced catalytic activity and recyclability in the tandem dehydrogenation of ammonia borane and selective hydrogenation of nitroarenes through an adsorption-activation-reaction mechanism. The strong interactions of the secondary amine linkage with borane and nitroarene molecules afford a positive synergy to promote the catalytic reaction. Moreover, the hierarchical structure of Pd@H-PPA allows the accessibility of active Pd NPs to reactants.
RESUMO
Health professions preventing and controlling Coronavirus Disease 2019 are prone to skin and mucous membrane injury, which may cause acute and chronic dermatitis, secondary infection and aggravation of underlying skin diseases. This is a consensus of Chinese experts on protective measures and advice on hand-cleaning- and medical-glove-related hand protection, mask- and goggles-related face protection, UV-related protection, eye protection, nasal and oral mucosa protection, outer ear, and hair protection. It is necessary to strictly follow standards of wearing protective equipment and specification of sterilizing and cleaning. Insufficient and excessive protection will have adverse effects on the skin and mucous membrane barrier. At the same time, using moisturizing products is highly recommended to achieve better protection.
Assuntos
Infecções por Coronavirus/terapia , Pessoal de Saúde , Mucosa/patologia , Doenças Profissionais/prevenção & controle , Pneumonia Viral/terapia , Pele/patologia , COVID-19 , China , Consenso , Emolientes/administração & dosagem , Luvas Protetoras , Desinfecção das Mãos/métodos , Humanos , Máscaras , Pandemias , Equipamento de Proteção IndividualRESUMO
Photocatalytic reduction of CO2 into energy-rich carbon compounds has attracted increasing attention. However, it is still a challenge to selectively and effectively convert CO2 to a desirable reaction product. Herein, we report a design of a synergistic photocatalyst for selective reduction of CO2 to CO by using a covalent organic framework bearing single Ni sites (Ni-TpBpy), in which electrons transfer from photosensitizer to Ni sites for CO production by the activated CO2 reduction under visible-light irradiation. Ni-TpBpy exhibits an excellent activity, giving a 4057 µmol g-1 of CO in a 5 h reaction with a 96% selectivity over H2 evolution. More importantly, when the CO2 partial pressure was reduced to 0.1 atm, 76% selectivity for CO production is still obtained. Theoretical calculations and experimental results suggest that the promising catalytic activity and selectivity are ascribed to synergistic effects of single Ni catalytic sites and TpBpy, in which the TpBpy not only serves as a host for CO2 molecules and Ni catalytic sites but also facilitates the activation of CO2 and inhibits the competitive H2 evolution.
RESUMO
Yolk-shell nanoreactors have received considerable interest for use in catalysis. However, the controlled synthesis of continuous crystalline shells without imperfections or cracks remains challenging. Here, a strategy for the synthesis of yolk-shell metal nanoparticles@covalent organic framework (MNPs@COF) nanoreactors by using MNPs@ZIF-8 core-shell nanostructures as a self-template is designed and developed. The COF shell is formed through an amorphous-to-crystalline transformation process of a polyimine shell in a mildly acidic solution, while the ZIF-8 is etched in situ, generating a void space between the MNPs core and the COF shell. With the protection of the COF shell, multiple ligand-free MNPs are confined inside of the hollow nanocages. Importantly, the synthetic strategy can be generalized to engineer the functions and properties of the designed yolk-shell nanocages by varying the structure of the COF shell and/or the composition of the core MNPs. Representative Pd@H-TpPa yolk-shell nanocages with active Pd NP cores and permeable TpPa shells exhibit high catalytic activity and stability in the reduction of 4-nitrophenol by NaBH4 at room temperature.
RESUMO
OBJECTIVE: To carry out genetic testing for a family affected with distal hereditary motor neuronopathy V (dHMN V). METHODS: Potential mutations of the GARS and BSCL2 genes were analyzed with PCR and Sanger sequencing. Suspected mutation was verified among unaffected members of the family and 100 healthy controls. Prenatal diagnosis was provided based on the above results. RESULTS: Sequencing analysis has identified a heterozygous c.269C>T (p.S90L) mutation in the BSCL2 gene, which resulted in replacement of Serine (TCG) to Leucine (TTG). The same mutation was found in all other 3 patients from the pedigree but not among unaffected members or the 100 healthy controls. By prenatal diagnosis, the fetus did not carry the above mutation. CONCLUSION: Pathogenic mutation of BSCL2 gene probably underlies the dHMN V in this pedigree, which enabled prenatal diagnosis for the proband.
Assuntos
Atrofia Muscular Espinal , Feminino , Subunidades gama da Proteína de Ligação ao GTP , Humanos , Mutação , Linhagem , GravidezRESUMO
The facile synthesis of palladium N-heterocyclic carbene (NHC) particles with spherical, cubic, and honeycomb morphologies is accomplished. The structures of cubic and honeycomb particles are defined as an unprecedented trinuclear palladium-NHC complex. An obvious effect of particle morphologies on catalytic activity and recyclability is observed in hetero-geneous cyanosilylation.
RESUMO
BACKGROUND: The importance of multidrug-resistant organisms (MDRO) in Chinese hospitals is not clearly delineated. Thus we sought to assess the prevalence of MDRO in Chinese intensive care units (ICUs). METHODS: Prospective study of inpatients admitted consecutively to eight ICUs in four Chinese cities in 2009-10. Admission and weekly screenings were performed by using selective media for methicillin resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Enterobacteriaceae, Acinetobacter and Pseudomonas aeruginosa. For the two latters, resistance to ceftazidime defined MDRO. Backward logistic regression models were designed to assess factors independently associated with MDRO carriage on admission and MDRO acquisition within ICUs. RESULTS: 686 patients were included, and the MDRO prevalence rate on admission was 30.5 % (32.7 % for ESBL-positive Enterobacteriaceae, 3.2 % for MRSA). Antibiotic treatment prior to ICU admission was independently associated with carriage on admission (OR: 1.4) in multivariate analysis. A total of 104 patients acquired ≥1 MDRO in ICU (overall attack rate: 23.7 %; 14.9 % for ESBL-positive Enterobacteriaceae, and 5.1 % for MRSA). The MDRO attack rate increased from 13.2 % in the first week to 82.1 % for ICU stay > 3 weeks. Duration of antibiotic exposure (OR: 1.16; 1.1-1.2) and prior antibiotic treatment before ICU (OR: 2.1; 1.1-3.3) were associated with MDRO acquisition in multivariate analysis. The MDRO prevalence rate on ICU discharge was 51.2 % and the global prevalence density rate 71 per 1000 hospital-days. CONCLUSION: More than one out of two patients was MDRO carrier on ICU discharge in Chinese hospitals. This is the result of the combination of a high MDRO prevalence rate on ICU admission and a high MDRO acquisition rate within ICU.
Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/epidemiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Infecções Estafilocócicas/epidemiologia , Acinetobacter/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , China/epidemiologia , Infecção Hospitalar/microbiologia , Enterobacteriaceae/isolamento & purificação , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Pseudomonas aeruginosa/isolamento & purificação , Infecções Estafilocócicas/microbiologia , Adulto Jovem , Resistência beta-LactâmicaRESUMO
Covalent triazine-based frameworks (CTFs) with a graphene-like layered morphology have been controllably synthesized by the trifluoromethanesulfonic acid-catalyzed nitrile trimerization reactions at room temperature via selecting different monomers. Platinum nanoparticles are well dispersed in CTF-T1, which is ascribed to the synergistic effects of the coordination of triazine moieties and the nanoscale confinement effect of CTFs. CTF-T1 exhibits excellent photocatalytic activity and stability for H2 evolution in the presence of platinum under visible light irradiation (λ ≥ 420 nm). The activity and stability of CTF-T1 are comparable to those of g-C3 N4 . Importantly, as a result of the tailorable electronic and spatial structures of CTFs that can be achieved through the judicial selection of monomers, CTFs not only show great potential as organic semiconductor for photocatalysis but also may provide a molecular-level understanding of the inherent heterogeneous photocatalysis.
Assuntos
Triazinas/química , Água/química , Catálise , Técnicas Eletroquímicas , Grafite/química , Hidrogênio/química , Oxirredução , Oxigênio/química , Processos Fotoquímicos , Raios UltravioletaRESUMO
Two urea-based porous organic frameworks, UOF-1 and UOF-2, were synthesized through a urea-forming condensation of 1,3,5-benzenetriisocyanate with 1,4-diaminobenzene and benzidine, respectively. UOF-1 and UOF-2 possess good hydrophilic properties and high scavenging ability for palladium. Their palladium polymers, PdII/UOF-1 and PdII/UOF-2, exhibit high catalytic activity and selectivity for SuzukiMiyaura cross-coupling reactions and selective reduction of nitroarenes in water. The catalytic reactions can be efficiently performed at room temperature. Palladium nanoparticles with narrow size distribution were formed after the catalytic reaction and were well dispersed in UOF-1 and UOF-2. XPS analysis confirmed the coordination of the urea oxygen atom with palladium. SEM and TEM images showed that the original network morphology of UOF-1 and UOF-2 was maintained after palladium loading and catalytic reactions.
RESUMO
Metal complex-based photocatalysts are promising for CO2 reduction. Their catalytic performances greatly rely on the synergy of ligands and metal ions. Here, we demonstrate an assembly of covalent organic cage (COC) and metal ions for photocatalytic CO2 reduction. The coordinated metal serves as catalytically active site for CO2 reduction, while the cage not only chelates the metal site, but also enhances the local concentration of CO2 around metal site, and decreases the key intermediate reaction energy barrier, thereby promoting the CO2 reduction reaction kinetically and thermodynamically. Accordingly, a Ni metalized COC exhibited outstanding photocatalytic performance in CO2-to-CO conversion under visible light irradiation. This study highlights the feasibility and advantage of organic cages for the construction of photocatalysts for artificial photosynthesis.
RESUMO
The design of photocatalytic supramolecular systems composing of semiconductors and molecular metal complexes for CO2 reduction has attracted increasing attention. The supramolecular system combines the structural merits of semiconductors and metal complexes, where the semiconductor harvests light and undertakes the oxidative site, while the metal complex provides activity for CO2 reduction. The intermolecular charge transfer plays crucial role in ensuring photocatalytic performance. Here, we review the progress of photocatalytic supramolecular systems in reduction of CO2 and highlight the interfacial charge transfer pathways, as well as their state-of-the-art characterization methods. The remaining challenges and prospects for further design of supramolecular photocatalysts are also presented.
RESUMO
Covalent organic frameworks (COFs) are crystalline porous materials with enormous potential for realizing solar-driven CO2-to-fuel conversion, yet the sluggish transfer/separation of photoinduced electrons and holes remains a compelling challenge. Herein, a step (S)-scheme heterojunction photocatalyst (CuWO4-COF) was rationally fabricated by a thermal annealing method for boosting CO2 conversion to CO. The optimal CuWO4/COF composite sample, integrating 10 wt% CuWO4 with an olefin (CâC) linked COF (TTCOF), achieved a remarkable gas-solid phase CO yield as high as 7.17 ± 0.35 µmol g-1h-1 under visible light irradiation, which was significantly higher than the pure COF (1.6 ± 0.29 µmol g-1h-1). The enhanced CO2 conversion rate could be attributable to the interface engineering effect and the formation of internal electric field (IEF) directing from TTCOF to CuWO4 according to the theoretical calculation and experimental results, which also proves the electrons transfer from TTCOF to CuWO4 upon hybridization. In addition, driven by the IEF, the photoinduced electrons can be steered from CuWO4 to TTCOF under visible light irradiation as well-elucidated by in-situ irradiated X-ray photoelectron spectroscopy, verifying the S-scheme charge transfer pathway over CuWO4/COF composite heterojunctions, which greatly foster the photoreduction activity of CO2. The preparation technique of the S-scheme heterojunction photocatalyst in this study provides a paradigmatic protocol for photocatalytic solar fuel generation.
RESUMO
A series of click ionic salts 4 a-4 n was prepared through click reaction of organic azides with alkyne-functionalized imidazolium or 2-methylimidazolium salts, followed by metathesis with lithium bis(trifluoromethanesulfonyl)amide or potassium hexafluorophosphate. All salts were characterized by IR, NMR, TGA, and DSC, and most of them can be classified as ionic liquids. Their steric and electronic properties can be easily tuned and modified through variation of the aromatic or aliphatic substituents at the imidazolium and/or triazolyl rings. The effect of anions and substituents at the two rings on the physicochemical properties was investigated. The charge and orbital distributions based on the optimized structures of cations in the salts were calculated. Reaction of 4 a with PdCl(2) produced mononuclear click complex 4 a-Pd, the structure of which was confirmed by single-crystal X-ray diffraction analysis. Suzuki-Miyaura cross-coupling shows good catalytic stability and high recyclability in the presence of PdCl(2) in 4 a. TEM and XPS analyses show formation of palladium nanoparticles after the reaction. The palladium NPs in 4 a are immobilized by the synergetic effect of coordination and electrostatic interactions with 1,2,3-triazolyl and imidazolium, respectively.
RESUMO
Intracranial aneurysms are local dilations of the cerebral blood vessels; people with intracranial aneurysms have a high risk to cause bleeding in the brain, which is related to high mortality and morbidity rates. Accurate detection and segmentation of intracranial aneurysms from Magnetic Resonance Angiography (MRA) images are essential in the clinical routine. Manual annotations used to assess the intracranial aneurysms on MRA images are substantial interobserver variability for both aneurysm detection and assessment of aneurysm size and growth. Many prior automated segmentation works have focused their efforts on tackling the problem, but there is still room for performance improvement due to the significant variability of lesions in the location, size, structure, and morphological appearance. To address these challenges, we propose a novel One-Two-One Fully Convolutional Networks (OTO-Net) for intracranial aneurysms automated segmentation in MRA images. The OTO-Net uses full convolution to achieve intracranial aneurysms automated segmentation through the combination of downsampling, upsampling, and skip connection. In addition, loss ensemble is used as the objective function to steadily improve the backpropagation efficiency of the network structure during the training process. We evaluated the proposed OTO-Net on one public benchmark dataset and one private dataset. Our proposed model can achieve the automated segmentation accuracy with 98.37% and 97.86%, average surface distances with 1.081 and 0.753, dice similarity coefficients with 0.9721 and 0.9813, and Hausdorff distance with 0.578 and 0.642 on these two datasets, respectively.
Assuntos
Aneurisma Intracraniano , Humanos , Processamento de Imagem Assistida por Computador , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: As the world's population ages, hip replacement, a routine treatment for arthritis, has become more common. However, after surgery, rehabilitation has some limited effectiveness with postoperative complications and persistent impairments. This study aimed to explore the effect of a self-efficacy-enhancing intervention program following hip replacement on patients' rehabilitation outcomes (self-efficacy, functional exercise compliance, hip function, activity and social participation, anxiety and depression, and quality of life). METHODS: A prospective randomized controlled trial with a repeated-measures, two-group design was conducted in a grade A general hospital in Guangdong Province, China. A total of 150 participants with a unilateral total hip replacement were recruited via convenience sampling. Participants were randomly assigned to either the self-efficacy enhancing intervention group (n = 76) or the control group (n = 74). The intervention encompassed a face-to-face education before discharge and four telephone-based follow-ups in six months after surgery. Researchers collected baseline data on one to three days after surgery, and outcomes data were collected one, three, and six months after surgery. RESULTS: Average age (deviation) in intervention and control group were 58 (10.32) and 59 (10.82), respectively. After six months, intervention group scored 86.83 ± 5.89 in rehabilitation self-efficacy, significantly higher than control group (72.16 ± 6.52, t = -10.820, p < 0.001) and their hip function has turned to "excellent" (90.52 ± 4.03), while that of the latter was limited to a "middle" level (78.47 ± 7.57). Statistically significant differences were found in secondary outcomes (p < 0.001). The advantage of intervention in improving quality of life was seen in the long term rather than in the early postoperative period. CONCLUSIONS: The self-efficacy-enhancing intervention performed by nurses induced better exercise compliance and physical, psychological, and social functions after hip replacement compared with routine care. We recommend such interventions to be combined with routine care soon after hip replacement. Further research should focus on the social participation of patients with hip replacement. Trial registration Retrospectively registered at Chinese Clinical Trial Registry (31/01/2020, No. ChiCTR2000029422, http://www.chictr.org.cn/index.aspx ).
Assuntos
Artroplastia de Quadril , Artroplastia de Quadril/reabilitação , Seguimentos , Humanos , Estudos Prospectivos , Qualidade de Vida , AutoeficáciaRESUMO
To overcome the limitations of conventional breast screening methods based on digital mammography, a quasi-3D imaging technique, digital breast tomosynthesis (DBT) has been developed in the field of breast cancer screening in recent years. In this work, a computer-aided architecture for mass regions segmentation in DBT images using a dilated deep convolutional neural network (DCNN) is developed. First, to improve the low contrast of breast tumour candidate regions and depress the background tissue noise in the DBT image effectively, the constraint matrix is established after top-hat transformation and multiplied with the DBT image. Second, input image patches are generated, and the data augmentation technique is performed to create the training data set for training a dilated DCNN architecture. Then the mass regions in DBT images are preliminarily segmented; each pixel is divided into two different kinds of labels. Finally, the postprocessing procedure removes all false-positives regions with less than 50 voxels. The final segmentation results are obtained by smoothing the boundaries of the mass regions with a median filter. The testing accuracy (ACC), sensitivity (SEN), and the area under the receiver operating curve (AUC) are adopted as the evaluation metrics, and the ACC, SEN, as well as AUC are 86.3%, 85.6%, and 0.852 for segmenting the mass regions in DBT images on the entire data set, respectively. The experimental results indicate that our proposed approach achieves promising results compared with other classical CAD-based frameworks.