Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 189, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643448

RESUMO

Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-ß1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-ß signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-ß1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-ß signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/genética , Fator de Crescimento Transformador beta1 , Glicólise , Neoplasias Colorretais/genética , Células-Tronco , Microambiente Tumoral , Proteína Smad3/genética , Proteína 4 Semelhante a Angiopoietina/genética
2.
Small ; 20(6): e2306262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775338

RESUMO

Low Coulombic efficiency, low-capacity retention, and short cycle life are the primary challenges faced by various metal-ion batteries due to the loss of corresponding active metal. Practically, these issues can be significantly ameliorated by compensating for the loss of active metals using pre-metallization techniques. Herein, the state-of-the-art development in various pr-emetallization techniques is summarized. First, the origin of pre-metallization is elaborated and the Coulombic efficiency of different battery materials is compared. Second, different pre-metallization strategies, including direct physical contact, chemical strategies, electrochemical method, overmetallized approach, and the use of electrode additives are summarized. Third, the impact of pre-metallization on batteries, along with its role in improving Coulombic efficiency is discussed. Fourth, the various characterization techniques required for mechanistic studies in this field are outlined, from laboratory-level experiments to large scientific device. Finally, the current challenges and future opportunities of pre-metallization technology in improving Coulombic efficiency and cycle stability for various metal-ion batteries are discussed. In particular, the positive influence of pre-metallization reagents is emphasized in the anode-free battery systems. It is envisioned that this review will inspire the development of high-performance energy storage systems via the effective pre-metallization technologies.

3.
J Transl Med ; 22(1): 544, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844980

RESUMO

BACKGROUND: Several studies have demonstrated a strong correlation between impaired Succinate dehydrogenase (SDH) function and the advancement of tumors. As a subunit of SDH, succinate dehydrogenase complex subunit C (SDHC) has been revealed to play tumor suppressive roles in several cancers, while its specific role in colorectal cancer (CRC) still needs further investigation. METHODS: Online database were utilized to investigate the expression of SDHC in colorectal cancer and to assess its correlation with patient prognosis. Cell metastasis was assessed using transwell and wound healing assays, while tumor metastasis was studied in a nude mice model in vivo. Drug screening and RNA sequencing were carried out to reveal the tumor suppressor mechanism of SDHC. Triglycerides, neutral lipids and fatty acid oxidation were measured using the Triglyceride Assay Kit, BODIPY 493/503 and Colorimetric Fatty Acid Oxidation Rate Assay Kit, respectively. The expression levels of enzymes involved in fatty acid metabolism and the PI3K/AKT signaling pathway were determined by quantitative real-time PCR and western blot. RESULTS: Downregulation of SDHC was found to be closely associated with a poor prognosis in CRC. SDHC knockdown promoted CRC metastasis both in vitro and in vivo. Through drug screening and Gene set enrichment analysis, it was discovered that SDHC downregulation was positively associated with the fatty acid metabolism pathways significantly. The effects of SDHC silencing on metastasis were reversed when fatty acid synthesis was blocked. Subsequent experiments revealed that SDHC silencing activated the PI3K/AKT signaling axis, leading to lipid accumulation by upregulating the expression of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) and reduction of fatty acid oxidation rate by suppressing the expression of acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1A (CPT1A). CONCLUSIONS: SDHC deficiency could potentially enhance CRC metastasis by modulating the PI3K/AKT pathways and reprogramming lipid metabolism.


Assuntos
Neoplasias Colorretais , Ácidos Graxos , Camundongos Nus , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Ácidos Graxos/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transdução de Sinais , Masculino , Feminino , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Camundongos , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos BALB C
4.
J Med Virol ; 96(3): e29533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483048

RESUMO

Cytidine/uridine monophosphate kinase 2 (UMP-CMP kinase 2, CMPK2) has been reported as an antiviral interferon-stimulated gene (ISG). We previously observed that the expression of CMPK2 was significantly upregulated after Zika Virus (ZIKV) infection in A549 cells. However, the association and the underlying mechanisms between CMPK2 induction and ZIKV replication remain to be determined. We investigated the induction of CMPK2 during ZIKV infection and the effect of CMPK2 on ZIKV replication in A549, U251, Vero, IFNAR-deficient U5A and its parental 2fTGH cells, Huh7 and its RIG-I-deficient derivatives Huh7.5.1 cells. The activation status of Jak-STAT signaling pathway was determined by detecting the phosphorylation level of STAT1, the activity of interferon stimulated response element (ISRE) and the expression of several interferon stimulated genes (ISGs). We found that ZIKV infection induced CMPK2 expression through an IFNAR and RIG-I dependent manner. Overexpression of CMPK2 inhibited while CMPK2 knockdown promoted ZIKV replication in A549 and U251 cells. Mechanically, we found that CMPK2 overexpression increased IFNß expression and activated Jak/STAT signaling pathway as shown by the increased level of p-STAT1, enhanced activity of ISRE, and the upregulated expression of downstream ISGs. These findings suggest that ZIKV infection induced CMPK2 expression, which inhibited ZIKV replication and serves as a positive feedback regulator for IFN-Jak/STAT pathway.


Assuntos
Interferon Tipo I , Núcleosídeo-Fosfato Quinase , Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Interferon Tipo I/genética , Replicação Viral , Receptores Imunológicos
5.
J Med Virol ; 96(4): e29624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647075

RESUMO

Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/µL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.


Assuntos
Bactérias , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Infecções Respiratórias , Vírus , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Recombinases/metabolismo , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Sensibilidade e Especificidade , Viroses/diagnóstico , Vírus/genética , Vírus/isolamento & purificação
6.
J Med Virol ; 96(5): e29659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747016

RESUMO

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Assuntos
Antígenos CD , Proteína 5 Relacionada à Autofagia , Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Vírus da Hepatite B , Replicação Viral , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Células Hep G2 , Hepatite B/virologia , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Transdução de Sinais , Antígeno 2 do Estroma da Médula Óssea/metabolismo
7.
J Clin Gastroenterol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38457410

RESUMO

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

8.
Cereb Cortex ; 33(16): 9627-9638, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381581

RESUMO

Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD.


Assuntos
Conectoma , Fobia Social , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Fobia Social/diagnóstico por imagem , Estudos de Casos e Controles
9.
Dig Dis Sci ; 69(1): 262-274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015322

RESUMO

BACKGROUND: Fluid resuscitation is one of the main therapies for acute pancreatitis (AP). There is still no consensus on the type of fluid resuscitation. This study investigated the differences between lactate Ringer's (LR) and normal saline (NS) in treating AP. METHODS: Two authors systematically searched Web of Science, Embase (via OVID), Cochrane Library, and PubMed to find all published research before July, 2023. The odds of moderately severe/severe AP and intensive care unit (ICU) admission are set as primary endpoints. RESULTS: This meta-analysis included 5 RCTs and 4 observational studies with 1424 AP patients in LR (n = 651) and NS (n = 773) groups. The results suggested that the odds of moderately severe/severe AP (OR 0.48; 95%Cl 0.34 to 0.67; P < 0.001) and ICU admission (OR 0.37; 95%Cl 0.16 to 0.87; P = 0.02) were lower in the LR group compared to NS group. In addition, the LR group had lower rates of local complications (OR 0.54; 95%Cl 0.32 to 0.92; P = 0.02), lower level of CRP, as well as a shorter hospital stay (WMD, - 1.09 days; 95%Cl - 1.72 to - 0.47 days; P < 0.001) than the NS group. Other outcomes, such as mortality, the rate of organ failure, SIRS, acute fluid collection, pancreatic necrosis, pseudocysts, and volume overload, did not differ significantly between two groups (P > 0.05). CONCLUSIONS: LR is preferred over NS as it decreases the odds of moderately severe/severe AP, the rate of ICU admission, local complication, and length of hospital stay. However, large-scale RCT are lacking to support these evidence.


Assuntos
Pancreatite , Solução Salina , Humanos , Doença Aguda , Soluções Isotônicas/uso terapêutico , Lactatos , Estudos Observacionais como Assunto , Pancreatite/terapia , Lactato de Ringer , Solução Salina/uso terapêutico , Cloreto de Sódio/uso terapêutico
10.
Appl Opt ; 63(7): 1676-1680, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437266

RESUMO

Although conventional fiber-cladding power strippers (CPSs) based on the techniques of high-index adhesive or corrosive liquids onto fiber inner cladding have been well developed, they are still facing challenges in special applications such as spaceborne or radiation-environment fiber lasers and amplifiers. In this paper, we propose and fabricate high-efficiency CPSs based on all-dielectric optical thin films. By numerically analyzing the propagation characteristics of cladding light at the thin film interface, we design a high-index T a 2 O 5 CPS and A l 2 O 3 CPS with single- and cascaded-layer films coated onto the fiber inner cladding, respectively. In our experiment, the CPSs are successfully fabricated onto the inner-cladding surface of 10/125 double-clad fiber based on ion-beam-assisted deposition technology. The stripping efficiency for the 976 nm residual cladding power was measured up to 99.38%, and the stripping power of the fiber CPS without active cooling can be 24 W at least. Such CPS could be advantageous for applications in spaceborne-based fiber lasers or amplifiers (e.g., gravitational wave detection, spaceborne lidar).

11.
Mikrochim Acta ; 191(5): 271, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632191

RESUMO

Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.


Assuntos
Anticorpos , Shigella flexneri , Humanos , Luz Azul , Fluorescência , Recombinases
12.
Geriatr Nurs ; 58: 388-398, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880079

RESUMO

BACKGROUND: Malnutrition is prevalent among elderly cancer patients. This study aims to develop a predictive model for malnutrition in hospitalized elderly cancer patients. METHODS: Data from January 2022 to January 2023 on cancer patients aged 60+ were collected, involving 22 variables. Key variables were identified using the LASSO (Least Absolute Shrinkage and Selection Operator) method, and nine machine learning models were tested. SHAP was used to interpret the XGBoost model. Malnutrition prevalence was assessed. RESULTS: Among 450 participants, 46.4 % were malnourished. Key predictors identified were ADL (Activities of Daily Living), ALB (Albumin), BMI (Body Mass Index) and age. XGBoost had the highest AUC of 0.945, accuracy of 0.872, and sensitivity of 0.968. Higher ADL and age increased malnutrition risk, while lower ALB and BMI reduced it. CONCLUSIONS: The XGBoost model is highly effective in detecting malnutrition in elderly cancer patients, enabling early and rapid nutritional assessments.

13.
Environ Res ; 216(Pt 2): 114585, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252835

RESUMO

Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.


Assuntos
Crassostrea , Microbiota , Animais , Temperatura , Crassostrea/microbiologia , Água do Mar/química , Estações do Ano , Bactérias/genética
14.
Ecotoxicol Environ Saf ; 251: 114518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640576

RESUMO

Dental fluorosis (DF) is a widely prevalent disease caused by excessive fluoride with limited awareness of its underlying pathogenesis. Here, a pilot population study was conducted to explore the pathogenesis of DF from the perspective of intestinal microbiome changes, and verified it in animal experiments combining intestinal microbiome and metabolomics. A total of 23 children were recruited in 2017 in China and divided into DF (n = 9) and control (n = 14) groups (DFG and CG, respectively). The SD rat model was established by drinking water containing sodium fluoride (NaF). Gut microbiome profiles of children and rats were analyzed by16S rDNA V3-V4 sequencing, and the intestinal metabolomics analysis of rats was performed by LC-MS methods. The 16 S rDNA sequencing revealed that the gut microbiome composition was significantly perturbed in children in DFG compared to that in CG. Acidobacteria and Thermi were specifically observed in DFG and CG, respectively. Besides, 15 fecal microbiotas were significantly altered at the genus level in DFG. Furthermore, only the expression of annotated genes for pentose and glucuronate interconversion pathway was significant lower in DFG than that in CG (P = 0.04). Notably, in NaF-treated rats, we also observed the changes of some key components of pentose and glucuronate interconversion pathway at the level of microorganisms and metabolites. Our findings suggested that the occurrence of DF is closely related to the alteration of intestinal microorganisms and metabolites annotated in the pentose and glucuronate interconversion pathway.


Assuntos
Fluorose Dentária , Ratos , Animais , Fluorose Dentária/genética , Fluorose Dentária/epidemiologia , Ratos Sprague-Dawley , Metabolômica/métodos , Fluoretos , Fluoreto de Sódio
15.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685881

RESUMO

Highly virulent Streptococcus suis (S. suis) infections can cause Streptococcal toxic shock-like syndrome (STSLS) in pigs and humans, in which an excessive inflammatory response causes severe damage. Hemolysin (SLY) is a major virulence factor of S. suis serotype 2 that produces pores in the target cell membrane, leading to cytoplasmic K+ efflux and activation of the NLRP3 inflammasome, ultimately causing STSLS. The critical aspect of hemolysin in the pathogenesis of S. suis type 2 makes it an attractive target for the development of innovative anti-virulence drugs. Here, we use the S. suis toxin protein (SLY) as a target for virtual screening. A compound called canagliflozin, a hypoglycemic agent, was identified through screening. Canagliflozin significantly inhibits the hemolytic activity of hemolysin. The results combined with molecular dynamics simulation, surface plasmon resonance, and nano differential scanning fluorimetry show that canagliflozin inhibits the hemolytic activity of SLY by binding to SLY. In addition, canagliflozin markedly reduced the release of SC19-induced inflammatory factors at the cellular level and in mice. Importantly, the combination of canagliflozin and ampicillin had a 90% success rate in mice, significantly greater than the therapeutic effect of ampicillin. The findings suggest that canagliflozin may be a promising new drug candidate for S. suis infections.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Camundongos , Suínos , Proteínas Hemolisinas , Canagliflozina , Ampicilina , Transporte Biológico , Infecções Estreptocócicas/tratamento farmacológico
16.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203295

RESUMO

As the world's largest farmed marine animal, oysters have enormous economic and ecological value. However, mass summer mortality caused by high temperature poses a significant threat to the oyster industry. To investigate the molecular mechanisms underlying heat adaptation and improve the heat tolerance ability in the oyster, we conducted genome-wide association analysis (GWAS) analysis on the F2 generation derived from the hybridization of relatively heat-tolerant Crassostrea angulata ♀ and heat-sensitive Crassostrea gigas ♂, which are the dominant cultured species in southern and northern China, respectively. Acute heat stress experiment (semi-lethal temperature 42 °C) demonstrated that the F2 population showed differentiation in heat tolerance, leading to extremely differentiated individuals (approximately 20% of individuals die within the first four days with 10% survival after 14 days). Genome resequencing and GWAS of the two divergent groups had identified 18 significant SNPs associated with heat tolerance, with 26 candidate genes located near these SNPs. Eleven candidate genes that may associate with the thermal resistance were identified, which were classified into five categories: temperature sensor (Trpm2), transcriptional factor (Gata3), protein ubiquitination (Ube2h, Usp50, Uchl3), heat shock subfamily (Dnajc17, Dnaja1), and transporters (Slc16a9, Slc16a14, Slc16a9, Slc16a2). The expressional differentiation of the above genes between C. gigas and C. angulata under sublethal temperature (37 °C) further supports their crucial role in coping with high temperature. Our results will contribute to understanding the molecular mechanisms underlying heat tolerance, and provide genetic markers for heat-resistance breeding in the oyster industry.


Assuntos
Ostreidae , Termotolerância , Humanos , Animais , Termotolerância/genética , Estudo de Associação Genômica Ampla , Hibridização de Ácido Nucleico , Hibridização Genética
17.
Small ; 18(18): e2201014, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373917

RESUMO

High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.

18.
Small ; 18(19): e2107491, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35195340

RESUMO

Real-time observation of the electrochemical mechanistic behavior at various scales offers new insightful information to improve the performance of lithium-ion batteries (LIBs). As complementary to the X-ray-based techniques and electron microscopy-based methodologies, neutron scattering provides additional and unique advantages in materials research, owing to the different interactions with atomic nuclei. The non-Z-dependent elemental contrast, in addition to the high penetration ability and weak interaction with matters, makes neutron scattering an advanced probing tool for the in operando mechanistic studies of LIBs. The neutron-based techniques, such as neutron powder diffraction, small-angle neutron scattering, neutron reflectometry, and neutron imaging, have their distinct functionalities and characteristics regimes. These result in their scopes of application distributed in different battery components and covering the full spectrum of all aspects of LIBs. The review surveys the state-of-the-art developments of real-time investigation of the dynamic evolutions of electrochemically active compounds at various scales using neutron techniques. The atomic-scale, the mesoscopic-scale, and at the macroscopic-scale within LIBs during electrochemical functioning provide insightful information to battery researchers. The authors envision that this review will popularize the applications of neutron-based techniques in LIB studies and furnish important inspirations to battery researchers for the rational design of the new generation of LIBs.

19.
Cancer Cell Int ; 22(1): 230, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35843949

RESUMO

BACKGROUND: The critical role of thioredoxin-interacting protein (TXNIP) in cellular sulfhydryl redox homeostasis and inflammasome activation is already widely known, however, no pan-cancer analysis is currently available. METHODS: We thus first explored the potential roles of TXNIP across thirty-three tumors mainly based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. RESULTS: TXNIP is lowly expressed in most cancers, and distinct associations exist between TXNIP expression and the prognosis of tumor patients. TXNIP expression was associated with tumor mutational burden, microsatellite instability, mismatch repair genes, tumor infiltrating immune cell abundance as well as cancer-associated fibroblasts. Moreover, ubiquitin mediated proteolysis, protein post-translational modification and other related pathways were involved in the functional mechanisms of TXNIP. CONCLUSIONS: Our first pan-cancer study comprehensively revealed the carcinostatic role of TXNIP across different tumors. And this molecule may be considered as a potential immunological and prognostic biomarker.

20.
Surg Endosc ; 36(1): 16-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426876

RESUMO

BACKGROUND: Wireless capsule endoscopy (WCE) is considered to be a powerful instrument for the diagnosis of intestine diseases. Convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist the detection of WCE images. We aimed to perform a systematic review of the current research progress to the CNN application in WCE. METHODS: A search in PubMed, SinoMed, and Web of Science was conducted to collect all original publications about CNN implementation in WCE. Assessment of the risk of bias was performed by Quality Assessment of Diagnostic Accuracy Studies-2 risk list. Pooled sensitivity and specificity were calculated by an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity. RESULTS: 16 articles with 23 independent studies were included. CNN application to WCE was divided into detection on erosion/ulcer, gastrointestinal bleeding (GI bleeding), and polyps/cancer. The pooled sensitivity of CNN for erosion/ulcer is 0.96 [95% CI 0.91, 0.98], for GI bleeding is 0.97 (95% CI 0.93-0.99), and for polyps/cancer is 0.97 (95% CI 0.82-0.99). The corresponding specificity of CNN for erosion/ulcer is 0.97 (95% CI 0.93-0.99), for GI bleeding is 1.00 (95% CI 0.99-1.00), and for polyps/cancer is 0.98 (95% CI 0.92-0.99). CONCLUSION: Based on our meta-analysis, CNN-dependent diagnosis of erosion/ulcer, GI bleeding, and polyps/cancer approached a high-level performance because of its high sensitivity and specificity. Therefore, future perspective, CNN has the potential to become an important assistant for the diagnosis of WCE.


Assuntos
Endoscopia por Cápsula , Inteligência Artificial , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/etiologia , Humanos , Redes Neurais de Computação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa