Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 516-522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233617

RESUMO

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

2.
Chem Rev ; 124(9): 5695-5763, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38629390

RESUMO

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.

3.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058217

RESUMO

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

4.
J Urol ; 209(1): 99-110, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194169

RESUMO

PURPOSE: We introduce an intrapericardial control technique using a robotic approach in the surgical treatment of renal tumor with level IV inferior vena cava thrombus to decrease the severe complications associated with cardiopulmonary bypass and deep hypothermic circulatory arrest. MATERIALS AND METHODS: Eight patients with level IV inferior vena cava thrombi not extending into the atrium underwent transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy obviating cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass-free group) by an expert team comprising urological, hepatobiliary, and cardiovascular surgeons. The central diaphragm tendon and pericardium were transabdominally dissected until the intrapericardial inferior vena cava were exposed and looped proximal to the cranial end of the thrombi under intraoperative ultrasound guidance. As controls, 14 patients who underwent robot-assisted inferior vena cava thrombectomy with cardiopulmonary bypass (cardiopulmonary bypass group) and 25 patients who underwent open thrombectomy with cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass/deep hypothermic circulatory arrest group) were included. Clinicopathological, operative, and survival outcomes were retrospectively analyzed. RESULTS: Eight robot-assisted inferior vena cava thrombectomies were successfully performed without cardiopulmonary bypass, with 1 open conversion. The median operation time and first porta hepatis occlusion time were shorter, and estimated blood loss was lower in the cardiopulmonary bypass-free group as compared to the cardiopulmonary bypass group (540 vs 586.5 minutes, 16.5 vs 38.5. minutes, and 2,050 vs 3,500 mL, respectively). Severe complications (level IV-V) were also lower in the cardiopulmonary bypass-free group than in cardiopulmonary bypass and cardiopulmonary bypass/deep hypothermic circulatory arrest groups (25% vs 50% vs 40%). Oncologic outcomes were comparable among the 3 groups in short-term follow-up. CONCLUSIONS: Pure transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy without cardiopulmonary bypass/deep hypothermic circulatory arrest represents as an alternative minimally invasive approach for selected level IV inferior vena cava thrombi.


Assuntos
Robótica , Veia Cava Inferior , Humanos , Veia Cava Inferior/cirurgia , Estudos Retrospectivos
5.
Opt Express ; 31(1): 107-115, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606945

RESUMO

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e., ΔT/T or ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2 (1L-MoS2) by measuring ΔT/T and ΔR/R with different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

6.
Eur Radiol ; 33(5): 3766-3774, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36725722

RESUMO

OBJECTIVE: To compare the diagnostic efficiency of contrast-enhanced ultrasound (CEUS) with that of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the differential diagnosis of clear and non-clear cell renal cell carcinoma, as confirmed by subsequent pathology. METHODS: A total of 181 patients with 184 renal lesions diagnosed by both CEUS and DCE-MRI were enrolled in the study, including 136 clear cell renal cell carcinoma (ccRCC) and 48 non-clear cell renal cell carcinoma (non-ccRCC) tumors. All lesions were confirmed by histopathologic diagnosis after surgical resection. Interobserver agreement was estimated using a weighted kappa statistic. Diagnostic efficiency in evaluating ccRCC and non-ccRCC was compared between CEUS and DCE-MRI. RESULTS: The weighted kappa value for interobserver agreement was 0.746 to 0.884 for CEUS diagnosis and 0.764 to 0.895 for DCE-MRI diagnosis. Good diagnostic performance in differential diagnosis of ccRCC and non-ccRCC was displayed by both CEUS and DCE-MRI: sensitivity was 89.7% and 91.9%, respectively; specificity was 77.1% and 68.8%, respectively; and area under the receiver operating curve was 0.834 and 0.803, respectively. No statistically significant differences were present between the two methods (p = 0.54). CONCLUSIONS: Both CEUS and DCE-MRI imaging are effective for the differential diagnosis of ccRCC and non-ccRCC. Thus, CEUS could be an alternative to DCE-MRI as a first test for patients at risk of renal cancer, particularly where DCE-MRI cannot be carried out. KEY POINTS: • CEUS and DCE-MRI features can help differentiate ccRCC and non-ccRCC. • The differential diagnosis of ccRCC and non-ccRCC by CEUS is comparable to that of DCE-MRI. • Interobserver agreement is generally high using CEUS and DCE-MRI.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Meios de Contraste/farmacologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Ultrassonografia/métodos , Estudos Retrospectivos
7.
Inorg Chem ; 62(51): 21518-21527, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087775

RESUMO

The electro-driven extraction of uranium from fluorine-containing uranium wastewater is anticipated to address the challenge of separating fluoro-uranium complexes in conventional technologies. Herein, we developed hydroxy-rich cobalt-based oxides (CoOx) for electro-assisted uranium extraction from fluorine-containing wastewater. Relying on theoretical calculations and other spectral measurements, the hydroxy-rich CoOx nanosheets can enhance the affinity for uranium due to the existence of a substantial quantity of hydroxyl groups. Accordingly, the CoOx nanosheets exhibit outstanding U(VI) removal efficiency in the presence of fluorine ions. Through the utilization of X-ray absorption fine structure (XAFS), we confirm that hydroxy-rich CoOx nanosheets capture free uranyl ions to form a sturdy 2Oax-1U-3Oeq configuration, which can be achieved through electro-driven fluorine-uranium separation. Notably, for the first time, the whole reaction process of uranium species on the CoOx surface from the initial uranium single atom growth to uranium oxide nanosheets is monitored by aberration-corrected transmission electron microscopes (AC-TEM). This work provides a paradigm for the advancement of novel functional materials as electrocatalysts for uranium extraction, as well as a new approach for studying the evolution mechanism of uranium species.

8.
Phys Chem Chem Phys ; 25(15): 10811-10819, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010915

RESUMO

The fascinating Dirac cone, which has produced some excellent properties in graphene, such as ballistic charge transport, ultra-high carrier mobility and the quantum Hall effect, has motivated researchers to design and study more two dimensional (2D) Dirac materials. In this work, we have designed a family of 2D Dirac cone materials M3X2 (M = Zn/Cd/Hg, X = Si/Ge) and studied their superior properties by first principles calculation. The calculated cohesive energy, phonon dispersion and ab initio molecular dynamics confirmed the energetic, dynamic and thermodynamic stability of Zn3Ge2, Cd3Ge2, Hg3Si2, and Cd3Si2 monolayers. It was found that the intrinsic Dirac cones exist in the electronic structure of the Zn3Ge2, Cd3Ge2, Hg3Si2 and Cd3Si2 monolayers. Their Fermi velocities are from 3.26 × 105 m s-1 to 4.32 × 105 m s-1 (8.2 × 105 m s-1 for graphene). It is noteworthy that the Dirac cone in the M3X2 structure is robust. It is independent of external strain (from -7% to +19%) and can also be preserved as one-dimensional zigzag nanoribbons and multilayers (from two to three-layers). Our work shows that the novel M3X2 Dirac cone materials are an important candidate for high-speed nanoelectronic devices.

9.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005653

RESUMO

The energy harvesters used in self-powered wireless sensing technology, which has the potential to completely solve the power supply problem of the sensing nodes from the source, usually require mechanical movement or operate in harsh environments, resulting in a significant reduction in device lifespan and reliability. Therefore, the influencing factors and failure mechanisms of the operating status of self-powered wireless sensors were analyzed, and an innovative evaluation index system was proposed, which includes 4 primary indexes and 13 secondary indexes, including energy harvesters, energy management circuits, wireless communication units, and sensors. Next, the weights obtained from the subjective analytic hierarchy process (AHP) and objective CRITIC weight method were fused to obtain the weights of each index. A self-powered sensor evaluation scheme (FE-SPS) based on fuzzy comprehensive evaluation was implemented by constructing a fuzzy evaluation model. The advantage of this scheme is that it can determine the current health status of the system based on its output characteristics. Finally, taking vibration energy as an example, the operational status of the self-powered wireless sensors after 200 h of operation was comprehensively evaluated. The experimental results show that the test self-powered wireless sensor had the highest score of "normal", which is 0.4847, so the evaluation result was "normal". In this article, a reliability evaluation strategy for self-powered wireless sensor was constructed to ensure the reliable operation of self-powered wireless sensors.

10.
Nano Lett ; 22(13): 5322-5329, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759746

RESUMO

In single-layer (1L) transition metal dichalcogenides, the reduced Coulomb screening results in strongly bound excitons which dominate the linear and the nonlinear optical response. Despite the large number of studies, a clear understanding on how many-body and Coulomb correlation effects affect the excitonic resonances on a femtosecond time scale is still lacking. Here, we use ultrashort laser pulses to measure the transient optical response of 1L-WS2. In order to disentangle many-body effects, we perform exciton line-shape analysis, and we study its temporal dynamics as a function of the excitation photon energy and fluence. We find that resonant photoexcitation produces a blue shift of the A exciton, while for above-resonance photoexcitation the transient response at the optical bandgap is largely determined by a reduction of the exciton oscillator strength. Microscopic calculations based on excitonic Heisenberg equations of motion quantitatively reproduce the nonlinear absorption of the material and its dependence on excitation conditions.

11.
Nano Lett ; 22(12): 4718-4724, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671172

RESUMO

Transition-metal dichalcogenide monolayers and heterostructures are highly tunable material systems that provide excellent models for physical phenomena at the two-dimensional (2D) limit. While most studies to date have focused on electrons and electron-hole pairs, phonons also play essential roles. Here, we apply ultrafast electron diffraction and diffuse scattering to directly quantify, with time and momentum resolution, electron-phonon coupling (EPC) in monolayer molybdenum disulfide and phonon transport from the monolayer to a silicon nitride substrate. Optically generated hot carriers result in a profoundly anisotropic distribution of phonons in the monolayer within ∼5 ps. A quantitative comparison with ab initio ultrafast dynamics simulations reveals the essential role of dielectric screening in weakening EPC. Thermal transport from the monolayer to the substrate occurs with the phonon system far from equilibrium. While screening in 2D is known to strongly affect equilibrium properties, our findings extend this understanding to the dynamic regime.

12.
J Am Chem Soc ; 144(4): 1700-1708, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041406

RESUMO

The benefits of excess PbI2 on perovskite crystal nucleation and growth are countered by the photoinstability of interfacial PbI2 in perovskite solar cells (PSCs). Here we report a simple chemical polishing strategy to rip PbI2 crystals off the perovskite surface to decouple these two opposing effects. The chemical polishing results in a favorable perovskite surface exhibiting enhanced luminescence, prolonged carrier lifetimes, suppressed ion migration, and better energy level alignment. These desired benefits translate into increased photovoltages and fill factors, leading to high-performance mesostructured formamidinium lead iodide-based PSCs with a champion efficiency of 24.50%. As the interfacial ion migration paths and photodegradation triggers, dominated by PbI2 crystals, were eliminated, the hysteresis of the PSCs was suppressed and the device stability under illumination or humidity stress was significantly improved. Moreover, this new surface polishing strategy can be universally applicable to other typical perovskite compositions.

13.
Appl Environ Microbiol ; 88(18): e0110022, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36036580

RESUMO

Carbohydrate-active enzymes are important components of the polysaccharide metabolism system in marine bacteria. Carrageenase is indispensable for forming carrageenan catalytic pathways. Here, two GH16_13 carrageenases showed likely hydrolysis activities toward different types of carrageenans (e.g., κ-, hybrid ß/κ, hybrid α/ι, and hybrid λ), which indicates that a novel pathway is present in the marine bacterium Flavobacterium algicola to use κ-carrageenan (KC), ι-carrageenan (IC), and λ-carrageenan (LC). A comparative study described the different features with another reported pathway based on the specific carrageenans (κ, ι, and λ) and expanded the carrageenan metabolic versatility in F. algicola. A further comparative genomic analysis of carrageenan-degrading bacteria indicated different distributions of carrageenan metabolism-related genes in marine bacteria. The crucial core genes encoding the GH127 α-3,6-anhydro-d-galactosidase (ADAG) and 3,6-anhydro-d-galactose (d-AHG)-utilized cluster have been conserved during evolution. This analysis further revealed the horizontal gene transfer (HGT) phenomenon of the carrageenan polysaccharide utilization loci (CarPUL) from Bacteroidetes to other bacterial phyla, as well as the versatility of carrageenan catalytic activities in marine bacteria through different metabolic pathways. IMPORTANCE Based on the premise that the specific carrageenan-based pathway involved in carrageenan use by Flavobacterium algicola has been identified, another pathway was further analyzed, and it involved two GH16_13 carrageenases. Among all the characterized carrageenases, the members of GH16_13 accounted for only a small portion. Here, the functional analysis of two GH16_13 carrageenases suggested their hydrolysis effects on different types of carrageenans (e.g., κ, hybrid ß/κ, hybrid α/ι-, and hybrid λ-), which led to the identification of another pathway. Further exploration enabled us to elucidate the novel pathway that metabolizes KC and IC in F. algicola successfully. The coexistence of these two pathways may provide improved survivability by F. algicola in the marine environment.


Assuntos
Galactose , Glicosídeo Hidrolases , Carragenina/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Galactosidases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Redes e Vias Metabólicas/genética , Polissacarídeos
14.
J Chem Phys ; 156(5): 054704, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135264

RESUMO

The optoelectronic properties of quantum confined semiconductor nanocrystals depend critically on the band edge electron and hole levels and their exciton fine structures. Transient absorption (TA) spectroscopy has been widely used to probe the dynamics of photogenerated electrons, holes, and excitons in these materials through their state filling induced bleach of the band edge exciton transition. Such effects, in principle, reflect the band edge fine structures and are well understood for the conduction band electrons. However, the valence band hole state filling signals remain poorly understood due to the complexity of the valence band level structure and the presence of fast hole trapping in many materials. Herein, we report a study of the valence band hole state filling effect by comparing the TA spectra of CdSe quantum dots (QDs) with different degrees of hole trapping and by selective removal of the conduction band electrons to adsorbed methyl viologen molecules. We observe that in CdSe/CdS core/shell QDs with a high photoluminescence quantum yield of 81%, the valence band hole contributes to 22% ± 1% of the exciton bleach, while a negligible hole state filling signal is observed in CdSe core only QDs with a photoluminescence quantum yield of 17%. This hole state filling effect can be explained by a simplified valence band edge hole model that contains two sets of twofold degenerate hole levels that are responsible for the higher energy bright exciton and lower energy dark exciton states, respectively. Our result clarifies the TA spectral features of the valence band holes and provides insights into the nature of single hole states in CdSe-based QDs.

15.
Ren Fail ; 44(1): 1732-1740, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36254386

RESUMO

OBJECTIVES: To investigate the relationship between serum cystatin C (CysC) levels and renal microvascular perfusion in patients with diabetic kidney disease (DKD). METHODS: A total of 57 patients with high CysC levels and 45 patients with normal CysC levels were enrolled. Data on clinical characteristics and laboratory examination results were also collected. Contrast-enhanced ultrasound (CEUS) of the kidneys was successively performed. The time-intensity curve (TIC) and related quantitative parameters of the kidneys were obtained by CEUS and the correlations between CysC and CEUS parameters were analyzed. RESULTS: Compared to the normal CysC group, the high CysC group had significantly lower wash-in area under the curve (WiAUC), wash-out area under the curve (WoAUC), and wash-in and wash-out area under the curve (WiWoAUC). In the normal CysC group, patients with Stage III chronic kidney disease (CKD) had higher AUCs than those with Stage I-II CKD (p < 0.05). In the high CysC group, patients with Stage IV-V CKD had lower wash-in AUC compared to patients with Stage I-II CKD (p = 0.023). The renal cortex microvascular perfusion parameters AUCs were positively correlated with the estimated glomerular filtration rate (GFR) (r = 0.280, 0.222, and 0.243), and CysC was inversely correlated with AUCs (r= -0.299, -0.251, and -0.273). CONCLUSIONS: CEUS parameters reflected changes in renal microvascular perfusion in patients with DKD, while AUCs might be useful indicators of declining GFR in DKD patients with increased CysC.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Biomarcadores , Creatinina , Cistatina C , Nefropatias Diabéticas/diagnóstico por imagem , Taxa de Filtração Glomerular , Humanos , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Perfusão
16.
Phys Chem Chem Phys ; 23(43): 24943, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709272

RESUMO

Correction for 'Ultrafast evolution of the complex dielectric function of monolayer WS2 after photoexcitation' by Stefano Calati et al., Phys. Chem. Chem. Phys., 2021, 23, 22640-22646, DOI: 10.1039/d1cp03437e.

17.
Phys Chem Chem Phys ; 23(39): 22640-22646, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596640

RESUMO

Transition metal dichalcogenides emerged as ideal materials for the investigation of exciton physics. Retrieving the excitonic signature in optical spectra, and tracking their time evolution upon photoexcitation requires appropriate analysis procedures, particularly when comparing different measurements, experimental techniques, samples, and substrates. In this work, we investigate the ultrafast time evolution of the exciton resonance of a monolayer of WS2 deposited on fused silica and Si/SiO2, and using two different measurement techniques: time-resolved reflectance and transmittance contrast. By modelling the dielectric function of the exciton with a Lorentz oscillator, using a Fresnell equations formalism, we derive analytical expressions of the exciton lineshape in both cases. The 2D linearized model introduced by Li et al. [Y. Li and T. F. Heinz, 2D Mater., 2018, 5, 025021] is used for the transmittance of the transparent substrate and a Fresnel transfer matrix method [O. Stenzel, The Physics of Thin Film Optical Spectra, Springer Series in Surface Science, 2016] is used to derive the reflectance in the case of the layered Si/SiO2 substrate. By fitting two models to the time-dependent optical spectra, we extract and quantify the time evolution of the parameter describing the excitonic resonance. We find a remarkable agreement between the extracted dynamics from both experiments despite the different side conditions, showing the equivalence and reliability of the two analysis methods in use. With this work, we pave the way to the resilient comparison of the exciton dynamics from different samples, measurements technique and substrates.

18.
J Ultrasound Med ; 40(7): 1361-1368, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33035374

RESUMO

OBJECTIVES: To conduct a quantitative analysis of renal microvascular perfusion in diabetic patients with kidney injury using contrast-enhanced ultrasound (CEUS). METHODS: A total of 172 patients with type 2 diabetes mellitus and kidney injury were recruited from May 2017 to November 2019. After collection of clinical characteristics, a CEUS examination was performed after injection of the contrast agent SonoVue (Bracco SpA, Milan, Italy). Time-intensity curves and renal perfusion parameters were analyzed. Ultrasound-guided renal biopsy was performed. The patients were divided into a diabetic nephropathy (DN) group and a nondiabetic renal disease (NDRD) group according to renal pathologic results. The discrimination of perfusion parameters between the groups was analyzed statistically with SPSS version 19.0 software (IBM Corporation, Armonk, NY). Receiver operating characteristic curves were used to illustrate the diagnostic performance of indicators. RESULTS: Ninety-eight patients, including 45 with DN (29 male; mean age ± SD, 57.76 ± 10.47 years) and 53 with NDRD (40 male; mean age, 48.7 ± 13.88 years) were included in this study. The peak enhancement (PE), wash-in the area under the curve (AUC), wash-in rate, wash-in perfusion index, wash-out AUC, wash-in and wash-out AUC, and wash-out rate were significantly different between the groups (P < .05). There were no differences in time-related parameters between the DN and NDRD groups (P > .05). The receiver operating characteristic curve analysis showed that the AUC for PE was 0.727, and PE lower than 7712.426 had diagnostic potential, with sensitivity of 81% and specificity of 40% in discriminating between NDRD and DN. CONCLUSIONS: The quantification of CEUS parameters can discriminate DN in diabetic patients with kidney injury. The PE and AUC may be feasible parameters.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/diagnóstico por imagem , Humanos , Itália , Rim/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Ultrassonografia
19.
Nano Lett ; 20(8): 6162-6169, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32697589

RESUMO

Cadmium chalcogenide nanoplatelets (NPLs) possess unique properties and have shown great potential in lasing, light-emitting diodes, and photocatalytic applications. However, the exact natures of the band-edge exciton and single carrier (electron and hole) states remain unclear, even though they affect the key properties and applications of these materials. Herein, we study the contribution of a single carrier (electron or hole) state to phase space filling of single exciton states of cadmium chalcogenide NPLs. With pump fluence dependent TA study and selective electron removal, we determine that a single electron and hole states contribute 85% and 12%, respectively, to the blocking of the excitonic transition in CdSe/ZnS core/shell NPLs. These observations can be rationalized by a model of band-edge exciton and single carrier states of 2D NPLs that differs significantly from that of quantum dots.

20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(3): 314-321, 2021 Jun 30.
Artigo em Zh | MEDLINE | ID: mdl-34238405

RESUMO

Objective To discuss the value of contrast-enhanced ultrasound(CEUS)parameters in evaluating the formation of Kimmelstiel-Wilson(K-W)nodules in diabetic nephropathy(DN).Methods Sixty-two patients pathologically diagnosed with DN and undergoing CEUS in the First Medical Center of Chinese PLA General Hospital from March 2017 to January 2020 were assigned into two groups according to whether K-W nodules were formed.The cortical CEUS parameters and the ratios of cortical to medullary CEUS parameters were compared between the two groups.Results The 62 patients included 19 patients without K-W nodules(group A)and 43 patients with K-W nodules(group B).The median rise time(U=209,P=0.013)and fall time(U=197,P=0.007)in group B were significantly longer than those in group A.The median wash-in rate(WiR)(U=228,P=0.031)and wash-out rate(WoR)(U=229,P=0.032)in group B were significantly lower than those in group A.The median peak enhancement(PE)1/PE2(U=224,P=0.026),WiR1/WiR2(U=235,P=0.041),and WoR1/WoR2(U=230,P=0.043)ratios in group B were significantly lower than those in group A.The median FT1/FT2 ratio in group B was significantly higher than that in group A(U=227,P=0.038).Conclusion CEUS parameters can be used to quantitatively evaluate renal cortical microperfusion in DN patients with K-W nodules.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Meios de Contraste , Nefropatias Diabéticas/diagnóstico por imagem , Humanos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa