Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pharmacol Res ; 194: 106850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453674

RESUMO

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linfócitos T CD8-Positivos , Imunomodulação , Neoplasias Pulmonares/patologia
2.
Toxicol Appl Pharmacol ; 441: 115988, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35307375

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for 35% of the genetic alterations in non-small cell lung cancer (NSCLC). The Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, is closely involved in RAS downstream pathways and development of many tumors by affecting cell proliferation, differentiation, and immunity. Targeting SHP2 with small molecules may be a promising avenue for the treatment of KRAS-mutant (mut) NSCLC. Herein, hexachlorophene (HCP) was identified as a SHP2 inhibitor with an IC50 value of 5.63 ± 0.75 µM through screening of the FDA-approved drug library. HCP specifically inhibited SHP2 rather than other phosphatases. Molecular docking showed that HCP displayed an orientation favorable for nucleophilic attack in the catalytic domain of SHP2. HCP suppressed viability of multiple KRAS-mut and KRAS-wild type cells and induced senescence and apoptosis in KRAS-mut cells. Moreover, HCP reversed epithelial-mesenchymal transition to suppress metastasis in KRAS-mut cells, and inhibited the RAS/MEK/ERK and PI3K/AKT signaling pathways by suppression of SHP2 phosphorylation and formation SHP2/Grb2/Gab1/SOS1 complex. In summary, HCP can act as a specific SHP2 inhibitor to inhibit KRAS-mut NSCLC cell proliferation and metastasis and induce senescence through suppression of the RAF/MEK/ERK and PI3K/AKT pathways. HCP warrants further investigation as a new compound skeleton for the development of selective SHP2 inhibitors for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Hexaclorofeno , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
3.
BMC Cancer ; 21(1): 531, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971846

RESUMO

BACKGROUND: Cervical cancer continues to be one of the leading causes of cancer deaths among females in low and middle-income countries. In this study, we aimed to assess the independent prognostic value of clinical and potential prognostic factors in progression-free survival (PFS) in cervical cancer. METHODS: We conducted a retrospective study on 92 cervical cancer patients treated from 2017 to 2019 at the Zhuhai Hospital of Traditional Chinese and Western Medicine. Tumor characteristics, treatment options, progression-free survival and follow-up information were collected. Kaplan-Meier method was used to assess the PFS. RESULTS: Results showed that the number of retrieved lymph nodes had a statistically significant effect on PFS of cervical cancer patients (P = 0.002). Kaplan-Meier survival curve analysis showed that cervical cancer patients with initial symptoms age 25-39 had worse survival prognoses (P = 0.020). And the using of uterine manipulator in laparoscopic treatment showed a better prognosis (P < 0.001). A novel discovery of our study was to verify the prognostic values of retrieved lymph nodes count combining with FIGO staging system, which had never been investigated in cervical cancer before. According to the Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis, significant improvements were found after the combination of retrieved lymph nodes count and FIGO stage in predicting PFS for cervical cancer patients (P < 0.001, AUC = 0.826, 95% CI: 0.689-0.962). CONCLUSION: Number of retrieved lymph nodes, initial symptoms age, uterine manipulator, and retrieved lymph nodes count combining with FIGO staging system could be potential prognostic factors for cervical cancer patients.


Assuntos
Neoplasias do Colo do Útero/mortalidade , Adulto , Idoso , Feminino , Humanos , Excisão de Linfonodo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia
4.
Pharmacol Res ; 171: 105574, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419228

RESUMO

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.


Assuntos
Antineoplásicos Fitogênicos , Carcinoma Pulmonar de Lewis , Carcinoma Pulmonar de Células não Pequenas , Flavonoides , Neoplasias Pulmonares , Animais , Feminino , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo
5.
BMC Genomics ; 21(1): 22, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910818

RESUMO

BACKGROUND: Early sex differentiation genes of zebrafish remain an unsolved mystery due to the difficulty to distinguish the sex of juvenile zebrafish. However, aromatase inhibitors (AIs) could direct juvenile zebrafish sex differentiation to male and even induce ovary-to-testis reversal in adult zebrafish. RESULTS: In order to determine the transcriptomic changes of sex differentiation in juvenile zebrafish and early sex-reversal in adult zebrafish, we sequenced the transcriptomes of juvenile and adult zebrafish treated with AI exemestane (EM) for 32 days, when juvenile zebrafish sex differentiation finished. EM treatment in females up-regulated the expression of genes involved in estrogen metabolic process, female gamete generation and oogenesis, including gsdf, macf1a and paqr5a, while down-regulated the expression of vitellogenin (vtg) genes, including vtg6, vtg2, vtg4, and vtg7 due to the lower level of Estradiol (E2). Furthermore, EM-juveniles showed up-regulation in genes related to cell death and apoptosis, such as bcl2l16 and anax1c, while the control-juveniles exhibited up-regulation of genes involved in positive regulation of reproductive process and oocyte differentiation such as zar1 and zpcx. Moreover, EM-females showed higher enrichment than control females in genes involved in VEGF signaling pathway, glycosaminoglycan degradation, hedgehog signaling pathway, GnRH signaling pathway and steroid hormone biosynthesis. CONCLUSIONS: Our study shows anti-masculinization in EM-treated adult females but not in EM-treated juveniles. This may be responsible for the lower sex plasticity in adults than juveniles.


Assuntos
Inibidores da Aromatase/farmacologia , Diferenciação Sexual/genética , Vitelogênese/genética , Vitelogeninas/genética , Peixe-Zebra/genética , Androstadienos/farmacologia , Animais , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Hedgehog/genética , Masculino , Reprodução/genética , Diferenciação Sexual/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Vitelogênese/efeitos dos fármacos
6.
Technol Cancer Res Treat ; 22: 15330338231187239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424497

RESUMO

Objectives: Despite the development of various cancer treatment methods, chemotherapy remains the most common approach for treating cancer. The risk of tumors acquiring resistance to chemotherapy remains a significant hurdle to the successful treatment of various types of cancer. Therefore, overcoming or predicting multidrug resistance in clinical treatment is essential. The detection of circulating tumor cells (CTCs) is an important component of liquid biopsy and the diagnosis of cancer. This study aims to test the feasibility of single-cell bioanalyzer (SCB) and microfluidic chip technology in identifying patients with cancer resistant to chemotherapy and propose new methods to provide clinicians with new choices. Methods: In this study, we used rapidly isolated viable CTCs from the patient blood samples method combined with SCB technology and a novel microfluidic chip, to predict whether patients with cancer are resistant to chemotherapy. SCB and microfluidic chip were used to select single CTCs, and the accumulation of chemotherapy drug was fluorescently measured in real time on these cells in the absence and presence of permeability-glycoprotein inhibitors. Results: Initially, we successfully isolated viable CTCs from the blood samples of patients. Additionally, the present study accurately predicted the response of 4 lung cancer patients to chemotherapeutic drugs. In addition, the CTCs of 17 patients with breast cancer diagnosed at Zhuhai Hospital of Traditional Chinese and Western Medicine were assessed. The results indicated that 9 patients were sensitive to chemotherapeutic drugs, 8 patients were resistant to a certain degree, and only 1 was completely resistant to chemotherapy. Conclusion: The present study indicated that the SCB technology could be used as a prognostic assay to evaluate the CTCs response to available drugs and guide physicians to treatment options that are most likely to be effective.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Linhagem Celular Tumoral , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Microfluídica/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico
7.
Heliyon ; 9(5): e15631, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153415

RESUMO

Objective: 'Homotherapy for heteropathy' is a theory by which different diseases with similar pathogenesis can be treated with one Chinese formula. We aimed to explore the key components and core targets of Weijing decoction (WJD) in treating various lung diseases, namely, pneumonia, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), pulmonary fibrosis, pulmonary tuberculosis and non-small cell lung cancer (NSCLC), via network pharmacology, molecular docking and some experiments. Significance: This is the first study on the mechanism of WJD in treating various lung diseases by 'homotherapy for heteropathy'. This study is helpful for the transformation of TCM formula and development of new drugs. Methods: Active components and therapeutic targets of WJD were obtained via TCMSP and UniProt databases. Targets of the six pulmonary diseases were harvested from the GeneCards TTD, DisGeNet, UniProt and OMIM databases. Drug-disease intersection targets, corresponding Venn diagrams, herb-component-target networks and protein-protein interaction networks were established. Furthermore, GO biological function and KEGG enrichment analysis were completed. Moreover, the binding activity between main compounds and core targets was measured through molecular docking. Finally, the xenograft NSCLC mouse model was established. Immune responses were evaluated by flow cytometry and mRNA expression levels of critical targets were measured by real-time PCR. Results: JUN, CASP3 and PTGS2 were the most critical targets in six pulmonary diseases. The active compounds beta-sitosterol, tricin and stigmasterol stably bound to many active sites on target proteins. WJD had extensive pharmacological regulation, involving pathways related to cancer, inflammation, infection, hypoxia, immunity and so on. Conclusions: Effects of WJD against various lung diseases involve lots of compounds, targets and pathways. These findings will facilitate further research as well as clinical application of WJD.

8.
Phytomedicine ; 114: 154751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004400

RESUMO

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Assuntos
Antineoplásicos , Artrite Reumatoide , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Antineoplásicos/uso terapêutico
9.
Phytomedicine ; 116: 154858, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37224774

RESUMO

BACKGROUND: Myricetin (3,5,7-trihydroxy-2-(3,4,5-tri hydroxyphenyl)-4-benzopyrone) is a common flavonol extracted from many natural plants and Chinese herb medicines and has been demonstrated to have multiple pharmacological activities, such as anti-microbial, anti-thrombotic, neuroprotective, and anti-inflammatory effects. Previously, myricetin was reported to target Mpro and 3CL-Pro-enzymatic activity to SARS-CoV-2. However, the protective value of myricetin on SARS-Cov-2 infection through viral-entry facilitators has not yet been comprehensively understood. PURPOSE: The aim of the current study was to evaluate the pharmacological efficacy and the mechanisms of action of myricetin against SARS-CoV-2 infection both in vitro and in vivo. METHODS: The inhibitory effects of myricetin on SARS-CoV-2 infection and replication were assessed on Vero E6 cells. Molecular docking analysis and bilayer interferometry (BLI) assays, immunocytochemistry (ICC), and pseudoviruses assays were performed to evaluate the roles of myricetin in the intermolecular interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and angiotensin-converting enzyme 2 (ACE2). The anti-inflammatory potency and mechanisms of myricetin were examined in THP1 macrophages in vitro, as well as in carrageenan-induced paw edema, delayed-type hypersensitivity (DTH) induced auricle edema, and LPS-induced acute lung injury (ALI) animal models. RESULTS: The results showed that myricetin was able to inhibit binding between the RBD of the SARS-CoV-2 S protein and ACE2 through molecular docking analysis and BLI assay, demonstrating its potential as a viral-entry facilitator blocker. Myricetin could also significantly inhibit SASR-CoV-2 infection and replication in Vero E6 cells (EC50 55.18 µM), which was further validated with pseudoviruses containing the RBD (wild-type, N501Y, N439K, Y453F) and an S1 glycoprotein mutant (S-D614G). Moreover, myricetin exhibited a marked suppressive action on the receptor-interacting serine/threonine protein kinase 1 (RIPK1)-driven inflammation and NF-kappa B signaling in THP1 macrophages. In animal model studies, myricetin notably ameliorated carrageenan-induced paw edema in rats, DTH induced auricle edema in mice, and LPS-induced ALI in mice. CONCLUSION: Our findings showed that myricetin inhibited HCoV-229E and SARS-CoV-2 replication in vitro, blocked SARS-CoV-2 virus entry facilitators and relieved inflammation through the RIPK1/NF-κB pathway, suggesting that this flavonol has the potential to be developed as a therapeutic agent against COVID-19.


Assuntos
COVID-19 , Camundongos , Ratos , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Simulação de Acoplamento Molecular , Carragenina , Lipopolissacarídeos/farmacologia , Ligação Proteica , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Flavonóis/farmacologia
10.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607911

RESUMO

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Citocinas , Subfamília D de Receptores Semelhantes a Lectina de Células NK
11.
Immunol Lett ; 244: 28-39, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288207

RESUMO

Caspase-1 is an integral regulator of innate immunity, which plays a key role in inflammasome activation and the release of pro-inflammatory cytokines. The development of novel non-peptidic small molecule caspase-1 inhibitors is an important strategy for antagonizing excessively activated caspase-1 induced by inflammatory diseases, including gouty arthritis. In the present study, we identified 63 caspase-1 inhibitors, with different structures and potencies, from bioactive compound libraries. Among them, NSC697923 potently inhibited the enzymatic activity of caspase-1, with an IC50 value of 1.737 µM. This compound adopted a favorable conformation in the active pocket of caspase-1. Furthermore, NSC697923 potently decreased mature interleukin (IL)-1ß secretion in macrophages stimulated by lipopolysaccharide plus nigericin, ATP, and monosodium urate crystal. NSC697923 also inhibited NLRP3 protein expression by suppressing the NF-κB signaling pathway and the interaction between receptor interacting protein-2 (RIP2) and pro-caspase-1, thereby blocking the priming of the NLRP3 inflammasome. In addition, NSC697923 significantly inhibited caspase-1 mediated gasdermin D cleavage and pyroptosis in macrophages. In an animal model of gouty arthritis, NSC697923 effectively inhibited joint swelling, IL-1ß release, and NLRP3 inflammasome activation. Our results indicate that NSC697923 can effectively suppress NLRP3 inflammasome activation by inhibiting caspase-1, thus warranting further investigation as a potential therapeutic for treating NLRP3 inflammasome-related diseases.


Assuntos
Artrite Gotosa , Gota , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
12.
Front Pharmacol ; 13: 875330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517800

RESUMO

In the past few decades, several gene mutations, including the anaplastic lymphoma kinase, epidermal growth factor receptor, ROS proto-oncogene 1 and rat sarcoma viral oncogene homolog (RAS), have been discovered in non-small cell lung cancer (NSCLC). Kirsten rat sarcoma viral oncogene homolog (KRAS) is the isoform most frequently altered in RAS-mutated NSCLC cases. Due to the structural and biochemical characteristics of the KRAS protein, effective approaches to treating KRAS-mutant NSCLC still remain elusive. Extensive recent research on KRAS-mutant inhibitors has made a breakthrough in identifying the covalent KRASG12C inhibitor as an effective agent for the treatment of NSCLC. This review mainly concentrated on introducing new covalent KRASG12C inhibitors like sotorasib (AMG 510) and adagrasib (MRTX 849); summarizing inhibitors targeting the KRAS-related upstream and downstream effectors in RAF/MEK/ERK pathway and PI3K/AKT/mTOR pathway; exploring the efficacy of immunotherapy and certain emerging immune-related therapeutics such as adoptive cell therapy and cancer vaccines. These inhibitors are being investigated in clinical trials and have exhibited promising effects. On the other hand, naturally extracted compounds, which have exhibited safe and effective properties in treating KRAS-mutant NSCLC through suppressing the MAPK and PI3K/AKT/mTOR signaling pathways, as well as through decreasing PD-L1 expression in preclinical studies, could be expected to enter into clinical studies. Finally, in order to confront the matter of drug resistance, the ongoing clinical trials in combination treatment strategies were summarized herein.

13.
Medicine (Baltimore) ; 101(41): e31027, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254028

RESUMO

Pleural effusion (PE) is a common manifestation of tuberculosis (TB) and malignant tumors but tuberculous PE (TPE) is difficult to distinguish from malignant PE (MPE), especially by noninvasive detection indicators. This study aimed to find effective detection indices in blood and PE for differentiating TB from a malignant tumor. A total of 815 patients who were diagnosed with TB or cancer in Hubei Shiyan Taihe Hospital from 2014 to 2017 were collected. Amongst them, 717 were found to have PE by thoracoscopy. Clinical characteristics, patients' blood parameters and PE indicator information were summarized for analysis. Patients with MPE had higher percentages to be bloody and negative of Rivalta test in PE than those with TPE. For clinical indicators, comparison of the specific parameters in blood showed that 18 indicators were higher in the TPE group than in the MPE group. By contrast, 12 indicators were higher in the MPE group than in the TPE group (P < .01). In addition, in PE tests, 3 parameters were higher in the TPE group, whereas other 4 parameters were higher in the MPE group (P < .01). Then, for clinical diagnosing practice, ROC analysis and principal component analysis were applied. The top 6 relevant indicators with area under curve over 0.70 were screened out as follows: hydrothorax adenosine dehydrogenase (pADA, 0.90), hydrothorax high-sensitivity C reactive protein (0.79), percentage of blood monocyte (sMONp, 0.75), blood high-sensitivity C reactive protein (sHsCRP, 0.73), erythrocyte sedimentation rate (0.71) and blood D-dimer (0.70). Moreover, logistic regression model revealed that a specific combination of 3 biomarkers, namely, pADA, sMONp and sHsCRP, could enhance the distinguishment of TB from malignant tumor with PE (area under curve = 0.944, 95% confidence interval = 0.925-0.964). The diagnostic function of the top single marker pADA in patients from different groups was analyzed and it was found to maintain high specificity and sensitivity. The 6 indicators, namely, pADA, hydrothorax high-sensitivity C reactive protein, sMONp, sHsCRP, sESR and blood D-dimer, showed significant diagnostic value for clinicians. Further, the combination of pADA, sMONp and sHsCRP has high accuracy for differential diagnosis for the first time. Most interestingly, the single marker pADA maintained high specificity and sensitivity in patients with different statuses and thus has great value for rapid and accurate diagnosis of suspected cases.


Assuntos
Hidrotórax , Derrame Pleural Maligno , Derrame Pleural , Tuberculose Pleural , Tuberculose , Adenosina , Biomarcadores , Biomarcadores Tumorais , Proteína C-Reativa , Humanos , Oxirredutases , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Derrame Pleural/metabolismo , Derrame Pleural Maligno/metabolismo , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose Pleural/diagnóstico
14.
Integr Cancer Ther ; 21: 15347354221144312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567455

RESUMO

Lung carcinoma is the primary reason for cancer-associated mortality, and it exhibits the highest mortality and incidence in developed and developing countries. Non-small cell lung cancer (NSCLC) and SCLC are the 2 main types of lung cancer, with NSCLC contributing to 85% of all lung carcinoma cases. Conventional treatment mainly involves surgery, chemoradiotherapy, and immunotherapy, but has a dismal prognosis for many patients. Therefore, identifying an effective adjuvant therapy is urgent. Historically, traditional herbal medicine has been an essential part of complementary and alternative medicine, due to its numerous targets, few side effects and substantial therapeutic benefits. In China and other East Asian countries, traditional herbal medicine is increasingly popular, and is highly accepted by patients as a clinical adjuvant therapy. Numerous studies have reported that herbal extracts and prescription medications are effective at combating tumors. It emphasizes that, by mainly regulating the P13K/AKT signaling pathway, the Wnt signaling pathway, and the NF-κB signaling pathway, herbal medicine induces apoptosis and inhibits the proliferation and migration of tumor cells. The present review discusses the anti-NSCLC mechanisms of herbal medicines and provides options for future adjuvant therapy in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Plantas Medicinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Medicina Herbária , Medicamentos de Ervas Chinesas/farmacologia , Via de Sinalização Wnt , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral
15.
Phytomedicine ; 95: 153786, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785104

RESUMO

BACKGROUND: Lung cancer has become the principal cause of cancer-related deaths. Emodin is a Chinese herb-derived compound extracted from the roots of Rheum officinale that exhibits numerous pharmacological characteristics. Secretory phospholipase A2-IIa (sPLA2-IIa) is overexpressed in cancers and plays an important role in cancer development. PURPOSE: This study aims to investigate the anti-tumor mechanism of emodin in non-small-cell lung cancer (NSCLC). METHODS: MTT assay was applied to detect the sensitivity of emodin to NSCLC cell line. Flow cytometry was used to examine the effect of emodin on cell cycle distribution and evaluate ROS level and apoptosis. Western blot analysis was utilised to examine the expression levels of sPLA2-IIa, PKM2, and AMPK and its downstream pathways induced by emodin. Enzyme inhibition assay was applied to investigate the inhibitory effect of emodin on sPLA2-IIa. The anticancer effect of emodin was also detected using an in vivo model. RESULTS: Emodin significantly inhibited NSCLC proliferation in vivo and in vitro and was relatively less cytotoxic to normal lung cell lines. Most importantly, emodin inhibited the proliferation of KRAS mutant cell lines by decreasing the expression of sPLA2-IIa and NF-κB pathways. Emodin also inhibited mTOR and AKT and activated the AMPK pathway. Furthermore, emodin induced apoptosis, increased the reactive oxygen species (ROS) level, and arrested the cell cycle. CONCLUSION: Emodin exhibited a novel anti-tumor mechanism of inhibiting the proliferation of KRAS mutant cell lines by decreasing the expression levels of sPLA2-IIa and NF-κB pathways. Hence, emodin can potentially serve as a therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Emodina , Neoplasias Pulmonares , Fosfolipases A2 Secretórias , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação para Baixo , Emodina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico
16.
Front Oncol ; 12: 941643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965565

RESUMO

Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.

17.
Phytomedicine ; 96: 153831, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34794861

RESUMO

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.


Assuntos
Neoplasias Pulmonares , Preparações Farmacêuticas , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica , Camundongos , Espectrometria de Massas em Tandem , Microtomografia por Raio-X
18.
Oncol Lett ; 22(5): 787, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34594428

RESUMO

Lung cancer is the most common type of cancer with the highest mortality rate worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of the total number of lung cancer cases. In the past two decades, immunotherapy has become a more promising treatment method than traditional treatments (surgery, radiotherapy and chemotherapy). Immunotherapy has been shown to improve the survival rate of patients and to have a superior effect when controlling lung cancer than traditional therapy. However, only a small number of patients can benefit from immunotherapy, and not all patients who qualify experience long-term benefits. In the clinic, the objective response rate of programmed cell death protein 1 treatment without the prior screening of patients is only 15-20%. Immunotherapy is associated with both opportunities and challenges for patients with NSCLC. The current challenges of immunotherapy include the lack of accurate biomarkers, inevitable resistance and insufficient understanding of immune checkpoints. In previous years, several methods for overcoming the challenges posed by immunotherapy have been proposed, but combination therapy is the most suitable choice. A large number of studies have shown that the combination of drugs can significantly improve their efficacy, compared with monotherapy, and that some therapeutic combinations have been approved by the Food and Drug Administration for the treatment of NSCLC. Traditional Chinese medicine (TCM) is a traditional medical practice in China that can play an important role in immunotherapy. Most agents used in TCM originate from plants, and have the advantages of low toxicity and multiple targets. In addition, TCM includes a unique class of drugs that can improve autoimmunity. Therefore, TCM may be a promising treatment method for all types of cancer.

19.
Antioxid Redox Signal ; 34(14): 1108-1127, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115253

RESUMO

Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.


Assuntos
Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Antineoplásicos/uso terapêutico , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPV/antagonistas & inibidores
20.
Transl Oncol ; 14(1): 100907, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217646

RESUMO

Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients' plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa