RESUMO
Clathrin-mediated endocytosis (CME) is imperative for physiological processes in eukaryotic cells. In fungi, the Pan1/End3/Sla1 complex controls the transition between early and late stages of CME. Although it is acknowledged that End3 uses its N-terminal to interact with the C-terminal of Sla1, detailed mechanism remains obscure. Magnaporthe oryzae, the pathogenic fungus of rice, cause blast disease that threatens rice production worldwide. Here we report the detailed interaction mechanism between End3 and Sla1 of M. oryzae, i.e. MoEnd3 and MoSla1. The two EH domains of MoEnd3 (MoEnd3-EH1 and MoEnd3-EH2) is different both in evolution and calcium binding, but are indispensable for conformational stability of each other, an unreported effect of tandem-arranged EH domains. MoEnd3-EH1 and MoEnd3-EH2 interact with peptide MoSla11145-1155 containing a NPF motif with a conserved mode, and MoEnd3-EHs (containing both EH1 and EH2 domains) binds MoSla11145-1155 with a higher affinity, supporting the synergetic effect of EH domains. In addition, MoEnd3-EHs also recognize peptide MoSla1971-981 with a new MPF motif that has not been reported before, while Sla1 of yeast contains a DPF motif that bears EH domain interaction ability. Collectively, our research shows that the two EH domains of End3 synergize to interact with dual XPF motifs of Sla1, which conforms to a bivalent receptor-bivalent ligand model to improve both affinity and specificity.
Assuntos
Peptídeos , Saccharomyces cerevisiae , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Peptídeos/metabolismo , Endocitose/fisiologiaRESUMO
Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.
Assuntos
Elementos de DNA Transponíveis/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/genética , Plântula/fisiologiaRESUMO
Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole-3-acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2-15 µmol/L) and 1-naphthalenacetic acid (NAA) (10-20 µmol/L). Moreover, the roots of the JA signaling-defective coi1-18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild-type Nipponbare and miR393b-overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross-talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.
Assuntos
Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Panax notoginseng/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Naftalenoacéticos/metabolismoRESUMO
To reduce the risk of resistance development, a novel fungicide with dual specificity is demanded. Trehalose is absent in animals, and its synthases, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), are safe fungicide targets. Here, we report the discovery of a dual-specificity inhibitor of MoTps1 (Magnaporthe oryzae Tps1, TPS) and MoTps2 (M. oryzae Tps2, TPP). The inhibitor, named A1-4, was obtained from a virtual screening and subsequent surface plasmon resonance screening. In in vitro assays, A1-4 interacts with MoTps1 and MoTps2-TPP (MoTps2 TPP domain) and inhibits their enzyme activities. In biological activity assays, A1-4 not only inhibits the virulence of M. oryzae on host but also causes aggregation of conidia cytosol, which is a characteristic phenotype of MoTps2. Furthermore, hydrogen/deuterium exchange mass spectrometry assays support the notion that A1-4 binds to the substrate pockets of TPS and TPP. Collectively, A1-4 is a promising hit compound for the development of safe fungicide with dual-target specificity.
Assuntos
Fungicidas Industriais , Trealose , Animais , Trealose/metabolismo , Fungicidas Industriais/farmacologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Metabolismo dos Carboidratos , Glucosiltransferases/químicaRESUMO
Blast disease caused by Magnaporthe oryzae threatens rice production worldwide, and chemical control is one of the main methods of its management. The high mutation rate of the M. oryzae genome results in drug resistance, which calls for novel fungicide targets. Fungal proteins that function during the infection process might be potential candidates, and Mps1 (M. oryzae mitogen-activated protein kinase 1) is such a protein that plays a critical role in appressorium penetration of the plant cell wall. Here, we report the structure-aided identification of a small-molecule inhibitor of Mps1. High-throughput screening was performed with Mps1 against a DNA-encoded compound library, and one compound, named A378-0, with the best performance was selected for further verification. A378-0 exhibits a higher binding affinity than the kinase cosubstrate ATP and can inhibit the enzyme activity of Mps1. Cocrystallization of A378-0 with Mps1 revealed that A378-0 binds to the catalytic pocket of Mps1, while the three ring-type substructures of A378-0 constitute a triangle that squeezes into the pocket. In planta assays showed that A378-0 could inhibit both the appressorium penetration and invasive growth but not the appressorium development of M. oryzae, which is consistent with the biological function of Mps1. Furthermore, A378-0 exhibits binding and activity inhibition abilities against Mpk1, the Mps1 ortholog of the soilborne fungal pathogen Fusarium oxysporum. Collectively, these results show that Mps1 as well as its orthologs can be regarded as fungicide targets, and A378-0 might be used as a hit compound for the development of a broad-spectrum fungicide. IMPORTANCE M. oryzae is the causal agent of rice blast, one of the most devastating diseases of cultivated rice. Chemical control is still the main strategy for its management, and the identification of novel fungicide targets is indispensable for overcoming existing problems such as drug resistance and food safety. With a combination of structural, biochemical, and in planta assays, our research shows that Mps1 may serve as a fungicide target and confirms that compound A378-0 binds to Mps1 and possesses bioactivity in inhibiting M. oryzae virulence. As fungal orthologs of Mps1 are conserved, A378-0 may serve as a hit for broad-spectrum fungicide development, as evidenced with Mpk1, the Mps1 ortholog of F. oxysporum. Additionally, A378-0 contains a novel chemical scaffold that has not been reported in approved kinase inhibitors, suggesting its potential to be considered the basis for the development of other kinase inhibitors.
Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungos/genética , Fungos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Plantas/microbiologia , Virulência , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão GênicaRESUMO
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani's terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.
RESUMO
The control of chitosan/silver nanoparticle composite microsphere (CAgMs) size is crucial for tuning its function. In the current work, monodisperse organically-modified CAgMs with controllable size were synthesized using a two-step method. The fine-tuning of the microsphere size was confirmed by many reaction parameters while the cross-linking agent was the key research object. Through physical and thermodynamic analysis, we found the cross-linking agent-induced smaller size, higher silver concentration, more heightened glass transition temperature and stronger hydrogen bond network. The as-prepared microspheres exhibited strong bacteriostasis and fresh-keeping function depending on cross-linking agent concentration. The phenomenon is believed to be derived from the difference in microorganism adsorption and killing ability from induced varying specific surface area and encapsulated silver content. Our current work highlights the size-controllable preparation of CAgMs, and based on our findings, small size CAgMs can be a promising candidate in the field of antibacterial and fruit preservation applications.