Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Small ; 20(4): e2305877, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718437

RESUMO

The precise design of low-cost, efficient, and definite electrocatalysts is the key to sustainable renewable energy. The urea oxidation reaction (UOR) offers a promising alternative to the oxygen evolution reaction for energy-saving hydrogen generation. In this study, by tuning the lattice expansion, a series of M-FeNi layered double hydroxides (M-FeNi LDHs, M: Mo, Mn, V) with excellent UOR performance are synthesized. The hydrolytic transformation of Fe-MIL-88A is assisted by urea, Ni2+ and high-valence metals, to form a hollow M-FeNi LDH. Owing to the large atomic radius of the high-valence metal, lattice expansion is induced, and the electronic structure of the FeNi-LDH is regulated. Doping with high-valence metal is more favorable for the formation of the high-valence active species, NiOOH, for the UOR. Moreover, the hollow spindle structure promoted mass transport. Thus, the optimal Mo-FeNi LDH showed outstanding UOR electrocatalytic activity, with 1.32 V at 10 mA cm-2 . Remarkably, the Pt/C||Mo-FeNi LDH catalyst required a cell voltage of 1.38 V at 10 mA·cm-2 in urea-assisted water electrolysis. This study suggests a new direction for constructing nanostructures and modulating electronic structures, which is expected to ultimately lead to the development of a class of auxiliary electrocatalysts.

2.
Small ; 19(27): e2300530, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971299

RESUMO

Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.

3.
Small ; 19(11): e2207044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642802

RESUMO

Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for PtII . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm-2 for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm-2 for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm-2 , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.

4.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032042

RESUMO

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

5.
Inorg Chem ; 61(8): 3553-3562, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148476

RESUMO

High storage capacity, high separation selectivity, and high structure stability are essential for an idea gas adsorbent. However, it is not easy to achieve all three at the same time, even for the promising metal-organic framework (MOF) adsorbents. We demonstrate herein that robust [Sc3O]-organic frameworks could be regulated by a micropore combination strategy for high-performance acetylene adsorption. Under the same solvent system with formic acid as a modulator, similar tritopic ligands extend [Sc3O(COO)6] trigonal-prismatic clusters to generate SNNU-5-Sc and SNNU-150-Sc adsorbents. Notably, the two Sc-MOFs can keep their architectures over 24 h in water at different pH values (2-12) or at 90 °C. Modulated by the linker symmetry, the final stacking metal-organic polyhedral cages produce open window sizes of about 10 Å for SNNU-5-Sc and 5 Å + 7 Å for SNNU-150-Sc. Due to such micropore combinations, SNNU-5-Sc exhibits a top-level C2H2 uptake of 211.2 cm3 g-1 (1 atm and 273 K) and SNNU-150-Sc shows high C2H2/CH4, C2H2/C2H4, and C2H2/CO2 selectivities of 80.65, 4.03, and 8.19, respectively, under ambient conditions. Dynamic breakthrough curves obtained on a fixed-bed column and grand canonical Monte Carlo (GCMC) simulations further support their prominent acetylene storage and purification performance. High framework stability, storage capacity, and separation selectivity make SNNU-5-Sc and SNNU-150-Sc ideal acetylene adsorbents in practical applications.

6.
Inorg Chem ; 61(36): 14397-14402, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041736

RESUMO

Heteroatom doping can effectively tune the electronic structure of an electrocatalyst to accelerate the adsorption/desorption of reaction intermediates, which sharply increases their intrinsic electroactivity. Herein, we successfully prepare iron (Fe)-doped cobalt phosphide (CoP) nanohoops (Fe/CoP NHs) with different Fe/Co atomic ratios as highly active electrocatalysts for the nitrate electrocatalytic reduction reaction (NIT-ERR). Electrochemical measurements reveal that appropriate Fe doping can improve the electroactivity of cobalt phosphide nanohoops for the NIT-ERR. In a 1 M KOH electrolyte, the Fe/CoP NHs with the optimized chemical composition can achieve an efficient ammonia (NH3) generation rate of 27.6 mg h-1 mgcat-1 for the conversion of NO3- into NH3 and a Faradaic efficiency of 93.3% at a -0.25 V potential, which exceed the values of various previously reported nanomaterials in an alkaline electrolyte.

7.
Inorg Chem ; 61(39): 15678-15685, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36122376

RESUMO

The electrocatalytic nitrate reduction reaction (NO3--ERR) to ammonia (NH3) is a promising strategy for NH3 production. Cu-based nanomaterials have been regarded as a kind of effective NO3--ERR catalysts. In this work, high-quality hollow Cu2O nanocubes (Cu2O h-NCs) are facilely synthesized by a simple one-step reduction method. The as-prepared Cu2O h-NCs reveal high selectivity and activity for NO3--ERR, which is ascribed to abundant oxygen vacancies, high surface area, hollow architecture, low mass transfer resistance, and strong adsorbing ability toward NO3-. In fact, Cu2O h-NCs can achieve a Faradic efficiency of 92.9% and an NH3 yield of 56.2 mg h-1 mgcat-1 for NH3 production at -0.85 V (vs RHE) potential, which exceeds those of other transition-metal-based NO3--ERR electrocatalysts.

8.
Inorg Chem ; 60(23): 18473-18482, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797628

RESUMO

Acetylene (C2H2) purification is of great importance for many chemical synthesis and processes. Metal-organic frameworks (MOFs) are widely used for gas adsorption and separation due to their variable structure and porosity. However, the exploitation of ideal MOF adsorbents for C2H2 keeps a challenging task. Herein, a combination of open metal sites (OMSs) and Lewis basic sites (LBSs) in robust MOFs is demonstrated to effectively promote the C2H2 purification performance. Accordingly, SNNU-37(Fe/Sc), two isostructural MOFs constituted by [Fe3O(COO)6] or [Sc3O(COO)6] trinuclear clusters and amide-functionalized tricarboxylate linkers, were designed with extra-stable 3,6-connected new architectures. Derived from the coexistence of high-density OMSs and LBSs, the C2H2 adsorption amounts of SNNU-37(Fe/Sc) are much higher than those values for C2H4 and CO2. Theoretical IAST selectivity values of SNNU-37(Fe) are 2.4 for C2H2/C2H4 (50/50, v/v) and 9.9 for C2H2/CO2 (50/50, v/v) at 298 K and 1 bar, indicating an excellent C2H2 separation ability. Experimental breakthrough curves also revealed that SNNU-37(Fe) could effectively separate C2H2/C2H4 and C2H2/CO2 under ambient conditions. GCMC simulations further indicate that open Fe or Sc sites and amide groups mainly contribute to stronger adsorption sites for C2H2 molecules.

9.
Angew Chem Int Ed Engl ; 60(18): 10122-10128, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33533093

RESUMO

The high storage capacity versus high selectivity trade-off barrier presents a daunting challenge to practical application as an acetylene (C2 H2 ) adsorbent. A structure-performance relationship screening for sixty-two high-performance metal-organic framework adsorbents reveals that a moderate pore size distribution around 5.0-7.5 Šis critical to fulfill this task. A precise pore space partition approach was involved to partition 1D hexagonal channels of typical MIL-88 architecture into finite segments with pore sizes varying from 4.5 Š(SNNU-26) to 6.4 Š(SNNU-27), 7.1 Š(SNNU-28), and 8.1 Š(SNNU-29). Coupled with bare tetrazole N sites (6 or 12 bare N sites within one cage) as high-density H-bonding acceptors for C2 H2 , the target MOFs offer a good combination of high C2 H2 /CO2 adsorption selectivity and high C2 H2 uptake capacity in addition to good stability. The optimized SNNU-27-Fe material demonstrates a C2 H2 uptake of 182.4 cm3 g-1 and an extraordinary C2 H2 /CO2 dynamic breakthrough time up to 91 min g-1 under ambient conditions.

10.
Inorg Chem ; 59(7): 4825-4834, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32186866

RESUMO

The separation of a mixture of C2H2 and CO2 is a great challenge due to their similar molecular sizes and shapes. Al-based metal-organic frameworks (Al-MOFs) have great promise for gas separation applications due to their light weight, high stability, and low cost. However, the cultivation of suitable Al-MOF single crystals is extremely difficult and has limited their explorations up to now. Since In, Ga, and Al are all 3p-block metal elements, a systematic application of the periodic law to investigate 3p-MOFs will undoubtedly help in the understanding and development of worthy Al-MOF materials. Herein, we report the design of a robust 3p metal-organic framework platform (SNNU-150) and the systematic regulation of C2H2/CO2 separation by open 3p-block metal sites. X-ray single-crystal diffraction analysis reveals that SNNU-150 is a 3,6-connected 3D framework consisting of [M3O(COO)6] trinuclear secondary building units (SBUs) and tritopic nitrilotribenzoate (NTB) linkers. Small {[M3O(COO)6]4(NTB)6} tetrahedral cages and extra-large {[M3O(COO)6]10(NTB)14} polyhedral cages connect with each other to generate a hierarchically porous architecture. These 3p-MOFs present very high water, thermal, and chemical stability, especially for SNNU-150-Al, which can maintain its framework at 85 °C in water for 24 h and in a room-temperature environment for more than 30 days. IAST calculations, breakthrough experiments, and GCMC simulations all show that SNNU-150 MOFs have top-level C2H2/CO2 separation performance and follow the order Al-MOF > Ga-MOF > In-MOF.

11.
Inorg Chem ; 59(14): 10368-10373, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32633506

RESUMO

The construction of superstable metal-organic frameworks (MOFs) for selective gas uptake is urgently demanded but remains a great challenge. Herein, a unique bifunctional deformed [Ga3O(COO)6] inorganic secondary building unit (SBU) generated from the desymmetrical evolution of typical triangular prismatic trinuclear cluster was first introduced, which was extended by an isosceles triangular organic linker to produce a robust Ga-MOF (SNNU-63). Remarkably, SNNU-63 can stabilize in water at 25 °C for 96 h and at 80 °C for more than 24 h, which surpasses nearly all other Ga-MOFs. The combined effects of open metal sites and hydrophobic pore environment provided by deformed [Ga3O] SBUs render SNNU-63 with high C2H2 storage capacity and efficient C2H2 and natural gas purification performance. The ideal adsorbed solution theory calculation, column breakthrough tests, and grand canonical Monte Carlo simulations demonstrate that SNNU-63 is a potential material for addressing the challenge of C2H2/CO2 and C2H2/CH4 mixture separation under ambient conditions.

12.
Inorg Chem ; 59(22): 16725-16736, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152248

RESUMO

Both methane (CH4) and acetylene (C2H2) are important energy source and raw chemicals in many industrial processes. The development of an energy-efficient and environmentally friendly separation and purification strategy for CH4 and C2H2 is necessary. Ultramicroporous metal-organic framework (MOF) materials have shown great success in the separation and purification of small-molecule gases. Herein, the synergy effect of tritopic polytetrazolate and ditopic terephthalate ligands successfully generates a series of isoreticular ultramicroporous cadmium tetrazolate-carboxylate MOF materials (SNNU-13-16) with excellent CH4 and C2H2 purification performance. Except for the uncoordinated tetrazolate N atoms serving as Lewis base sites, the pore size and pore surface of MOFs are systematically engineered by regulating dicarboxylic acid ligands varying from OH-BDC (SNNU-13) to Br-BDC (SNNU-14) to NH2-BDC (SNNU-15) to 1,4-NDC (SNNU-16). Benefiting from the ultramicroporous character (3.8-5.9 Å), rich Lewis base N sites, and tunable pore environments, all of these ultramicroporous MOFs exhibit a prominent separation capacity for carbon dioxide (CO2) or C2 hydrocarbons from CH4 and C2H2. Remarkably, SNNU-16 built by 1,4-NDC shows the highest ideal adsorbed solution theory CO2/CH4, ethylene (C2H4)/CH4, and C2H2/CH4 separation selectivity values, which are higher than those of most famous MOFs with or without open metal sites. Dynamic breakthrough experiments show that SNNU-16 can also efficiently separate the C2H2/CO2 mixtures with a gas flow rate of 4 mL min-1 under 1 bar and 298 K. The breakthrough time (18 min g-1) surpasses most best-gas-separation MOFs and nearly all other metal azolate-carboxylate MOF materials under the same conditions. The above prominently CH4 and C2H2 purification abilities of SNNU-13-16 materials were further confirmed by the Grand Canonical Monte Carlo (GCMC) simulations.

13.
Exp Cell Res ; 377(1-2): 56-66, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30779919

RESUMO

Ozone (O3) is a major component of air pollution, which has been associated with airway inflammation characterized by the influx of neutrophils in asthmatic subjects. Canonical transient receptor potential 6 (TRPC6) channel is recently identified as a target of oxidative stress which is involved in airway inflammation. However, the regulatory role of TRPC6 in airway epithelial cells and neutrophils has not yet been illuminated in detail. In this study, we investigated the role of TRPC6 in neutrophil adhesion to airway epithelial cells exposed to O3 in vivo and in vitro approaches. Using transgenic mice, the results showed that TRPC6-deficiency attenuated O3-induced neutrophil recruitment to airway epithelial cells and intercellular adhesion molecule-1 (ICAM-1) expression. In vitro, O3 induced ICAM-1 expression and neutrophil adhesion to 16HBE cells (human airway epithelial cell line) and which were reduced by both TRPC6 silencing short hairpin RNA (shRNA) and TRPC6 inhibitor Larixyl Acetate (LA). We also confirmed that TRPC6-dependent Ca2+ entry and NF-κB activation in 16HBE cells were required for ICAM-1-mediated neutrophil adhesion exposed to O3. In conclusion, this study demonstrated the contribution of TRPC6 to O3-induced neutrophil adhesion to airway epithelial cells via NF-κB activation and ICAM-1 expression, which may provide new potential concepts for preventing and treating air pollutant-related inflammatory lung diseases.


Assuntos
Adesão Celular , Células Epiteliais/fisiologia , Inflamação/prevenção & controle , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Neutrófilos/fisiologia , Ozônio/toxicidade , Canal de Cátion TRPC6/fisiologia , Animais , Células Epiteliais/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Neutrófilos/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais
14.
Inorg Chem ; 58(24): 16792-16799, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31762269

RESUMO

Evaluating the effect of ligand substitution on metal ions and/or clusters during the MOF growth process is conducive to rational design of isoreticular MOFs with improved performance. Through topological direction and ligand substitution strategy, we herein constructed two Sc-soc-MOFs (Sc-EBTC and Sc-ABTC) based on two similar rectangular-planar diisophthalate ligands, linear-shaped H4EBTC (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid) and zigzag-shaped H4ABTC (3,3',5,5'-azobenzenetetracarboxylic acid), under solvothermal conditions with formic acid as a modulator. {Sc[(Sc3O)(H2O)3]3(EBTC)6} (Sc-EBTC) possesses two distinct clusters as SBUs, trinuclear [Sc3O(CO2)6] (SBU1) and mononuclear cluster [ScO6] (SBU2), which maintain the soc-topology except for the mononuclear [ScO6] instead of the corresponding trinuclear [Sc3O(CO2)6] in Sc-ABTC ({(Sc3O)(H2O)3(ABTC)1.5(NO3)}). Notably, Sc-EBTC represents a rare soc-MOF with two distinct clusters as SBUs. Due to similar pore spaces, the two Sc-soc-MOF materials both exhibit enhanced and comparable gas sorption and selectivity performances. Specially, their remarkable C2H2, C2H4, and CO2 storage capacity along with prominent CO2/CH4 and C2-hydrocarbons/CH4 separations indicate that these Sc-soc-MOFs are promising adsorbents for natural gas purification under ambient conditions.

15.
Angew Chem Int Ed Engl ; 58(38): 13590-13595, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31407503

RESUMO

A strategy called ultramicroporous building unit (UBU) is introduced. It allows the creation of hierarchical bi-porous features that work in tandem to enhance gas uptake capacity and separation. Smaller pores from UBUs promote selectivity, while larger inter-UBU packing pores increase uptake capacity. The effectiveness of this UBU strategy is shown with a cobalt MOF (denoted SNNU-45) in which octahedral cages with 4.5 Špore size serve as UBUs. The C2 H2 uptake capacity at 1 atm reaches 193.0 cm3 g-1 (8.6 mmol g-1 ) at 273 K and 134.0 cm3 g-1 (6.0 mmol g-1 ) at 298 K. Such high uptake capacity is accompanied by a high C2 H2 /CO2 selectivity of up to 8.5 at 298 K. Dynamic breakthrough studies at room temperature and 1 atm show a C2 H2 /CO2 breakthrough time up to 79 min g-1 , among top-performing MOFs. Grand canonical Monte Carlo simulations agree that ultrahigh C2 H2 /CO2 selectivity is mainly from UBU ultramicropores, while packing pores promote C2 H2 uptake capacity.

16.
Am J Physiol Cell Physiol ; 314(3): C278-C288, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141922

RESUMO

receptor potential canonical (TRPC) channels are presently an emerging target for airway disorders. Recent evidence has indicated that TRPC6 as a member of the TRPC family plays an important role in airway inflammation, but its precise function in bronchial epithelial cells remains unclear. The aim of this study was to investigate the role of TRPC6 in Toll-like receptor 4 (TLR4)-mediated inflammation in human bronchial epithelial cells stimulated by endotoxin [lipopolysaccharide (LPS)]. Hyp9 is a simplified phloroglucinol derivative of hyperforin that highly selectively activates TRPC6 channels. The results show that the activation of TRPC6 by Hyp9 induced the production of interleukin (IL)-8 and IL-6. LPS was also able to induce the release of IL-8 and IL-6, which was significantly aggravated by Hyp9 and reduced by knockdown of TRPC6. Treatment with LPS not only chronically induced the expression of TRPC6 mRNA and protein in a TLR4-dependent manner but also acutely increased Ca2+ influx through TRPC6 channels. In addition, LPS-induced overexpression of TRPC6 and Ca2+ influx were associated with the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt. Importantly, TRPC6 was required for the activation of ERK1/2, p38, and NF-κB. In conclusion, these data reveal that LPS induced the overexpression of TRPC6 and TRPC6-dependent Ca2+ influx via the TLR4/PI3K/Akt pathway resulting in Ca2+ mobilization, which subsequently promoted the activation of ERK1/2, p38, and NF-κB and the inflammatory response in bronchial epithelial cells.


Assuntos
Brônquios/diagnóstico por imagem , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canal de Cátion TRPC6/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Brônquios/enzimologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/enzimologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
17.
Inorg Chem ; 57(22): 14280-14289, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30394080

RESUMO

During the formation of magnesium-organic frameworks, the coordination sphere of magnesium tends to be partially occupied by O-containing solvent molecules such as amides, which will dramatically decrease the symmetry of Mg-organic frameworks and thus lead to low stability. It is noted that up to now, most reported Mg-metal-organic frameworks (MOFs) (>80%) crystallize in the space groups whose symmetry is lower than that of a tetragonal system. In this work, we demonstrate that acetate (Ac) may act as modulator to eliminate the influence of amide solvent and improve the symmetry of Mg-organic frameworks. Two novel Mg-MOFs, namely, {[(CH3)NH3]4[Mg3(BTB)8/3(Ac)2(H2O)]} n (SNNU-35, H3BTB = 4',4'',4'''-benzene-1,3,5-tribenzoic acid) and {[(CH3)2NH2][Mg2(FDA)2(Ac)]} n (SNNU-36, H2FDA = 2,5-furandicarboxylic acid) were successfully designed, which crystallize in rhombohedral R-3 and tetragonal I4 /mmm space groups, respectively. Four independent BTB ligands link three unique Mg cations and generate superlarge [Mg21BTB17] nanocages, which interlock each other by strong π···π stacking to give a two-fold interpenetrating architecture of SNNU-35. On the other hand, carboxylate and acetate groups chelate Mg atoms to form one-dimensional chains, which are extended by FDA to produce the rod-packing framework of SNNU-36. Two microporous Mg-MOFs both exhibit notable CO2 and H2 uptakes. H3BTB and H2FDA ligands both have emission features, and Mg ions usually can enhance the fluorescent intensity, which lead to a strong solid-state luminescence emission property of SNNU-35 and -36. Importantly, two Mg-MOFs both show fast and quantative sensing performance for nitrocompounds. Among three selected models of substrate, SNNU-35 and -36 can eliminate the interference of nitromethane (NM) and exhibit high sensitivity to nitrobenzene (NB) and o-nitrotoluene (2-NT) with large k sv values (>105 M-1). Especially, the fluorescence quenching efficiency of NB (5000 ppm) and 2-NT (8000 ppm) can reach 96.3% and 89.5% and 85.0% and 83.7% for SNNU-35 and -36, respectively. This work offers not only an effective route to improve the symmetry of magnesium-organic frameworks but also two potential fluorescence sensors for nitroaromatic compounds.

18.
Chemistry ; 23(27): 6693-6700, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28295761

RESUMO

By regulating the tetratopic carboxylate ligands, two robust Fe-MOFs (MOF=Metal-organic framework) comprising trigonal prismatic building blocks under a DMA/DMSO/HBF4 solvent system, namely, [(CH3 )2 NH2 ][FeII3 (OH)(BPTC)1.5 (DMSO)3 ] (SNNU-60) and [FeIII FeII2 (OH)(ABTC)1.5 (DMSO)3 ] (SNNU-61) (BPTC=3,3',5,5'-biphenyltetracarboxylic acid, ABTC=3,3',5,5'-azobenzenetetracarboxylic acid, SNNU=Shaanxi Normal University) have been successfully synthesized. The torsions between the benzene groups of the ligands result in two MOFs exhibiting completely different (4,6)-connected frameworks, which represent the only two MOF types constructed by [M3 (O/OH)(COO)6 ] trimeric building units and quadrilateral tetratopic carboxylate linkers until now. The robust Fe-MOFs SNNU-60 and SNNU-61 both exhibit high thermal/chemical stability, permanent microporosity, and excellent gas uptake capability for H2 , CO2 , C2 H2 , and C2 H4 under 1 bar. SNNU-60 in particular displays very high C2 H2 capture under low pressure (85 cm3 cm-3 at 0.15 bar and 298 K), which is among the top C2 H2 uptake MOF materials. Also, these two Fe-MOFs display high separation for CO2 and C2 -hydrocarbons over CH4 . Significantly, thanks to the high stability, suitable pore size, open Fe sites, and ion skeleton, SNNU-60 has extremely high C2 H2 /CH4 selectivity (83.6, 298 K), which surpasses most MOFs reported so far under the same conditions.

19.
Inorg Chem ; 56(12): 7161-7174, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28561593

RESUMO

A general preparative method for multifunctional halogeno(cyano)cuprate materials in ionic liquids is developed in this work. Under ionothermal conditions, alkylimidazolium-based ionic liquids serving as solvent, charge-compensating, and structure-directing agent, as well as reactant lead to 12 members of the novel hybrid halogeno(cyano)cuprate family with a general formula of [R1R2R3IM]b+c-a[CuaXb(CN)c] (R1R2R3IM = alkylimidazolium cations, X = halide anions). X-ray single-crystal diffractions show that diverse inorganic halogeno(cyano)cuprate components vary from discrete complexes (1 and 2), one-dimensional (1D) chains (3-7), two-dimensional (2D) layer (8), to three-dimensional (3D) open frameworks (9-12). 1 and 2 are of zero-dimensional discrete structures containing triangular [CuX3]2- anions. In complexes 3-7, pentagonal bipyramidal [Cu2X3] units are bridged by CN groups to give 1D [Cu2X3(CN)]2- inorganic chains, which are charge-balanced by the surrounded alkylimidazolium cations. 2D inorganic [Cu5ClI2(CN)4]2- layer in complex 8 is alternately packed with [VMIM]+ organic cations. In complex 9, left- and right-handed Cu-CN helical chains connect each other to give a 3D open framework, which are further entrapped by 1D zigzag Cu-CN chains and [PMIM]+ cations. Diverse unique Cu(I) atoms and cyanide or halide bridging groups in 10, 11, and 12 are extended into 3D anionic open frameworks with 1D channels, which are occupied by alkylimidazolium cations. For all hybrid halogeno(cyano)cuprate complexes, the extensively existing C-H···X or C-H···π hydrogen bonds help to stabilize the ultimate supramolecular packing structures. Notably, the distances between adjacent Cu(I) centers range from 2.420(2) to 2.989(2) Å in all polymeric frameworks, which indicate strong Cu···Cu interactions. Thanks to the cooperation of conjugate π electron cyanide systems with halide ions and/or Cu···Cu interactions, compounds 1-12 all demonstrate strong solid-state photoluminescence and semiconducting performance. Specially, hybrid halogeno(cyano)cuprates reported herein first exhibit excellent photocatalytic degradation of organic dye. To the best of our knowledge, fewer than 10 crystalline halogeno(cyano)cuprate compounds were obtained before this work, although different synthetic routes have been involved. Clearly, the discovery of this large hybrid material family under ionothermal conditions is important for the further development of novel functional halogeno(cyano) filled-shell d10 metal crystalline materials.

20.
Inorg Chem ; 54(20): 9862-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26430945

RESUMO

In the design of new materials, those with rare and exceptional compositional and structural features are often highly valued and sought after. On the other hand, materials with common and more accessible modes can often provide richer and unsurpassed compositional and structural variety that makes them a more suitable platform for systematically probing the composition-structure-property correlation. We focus here on one such class of materials, pillar-layered metal-organic frameworks (MOFs), because different pore size and shape as well as functionality can be controlled and adjusted by using pillars with different geometrical and chemical features. Our approach takes advantage of the readily accessible layered Zn-1,2,4-triazolate motif and diverse dicarboxylate ligands with variable length and functional groups, to prepare seven Zn-triazolate-dicarboxylate pillar-layered MOFs. Six different gases (N2, H2, CO2, C2H2, C2H4, and CH4) were used to systematically examine the dependency of gas sorption properties on chemical and geometrical properties of those MOFs as well as their potential applications in gas storage and separation. All of these pillar-layered MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2 hydrocarbons over CH4 selectivity. An interesting observation is that the BDC ligand (BDC = benzenedicarboxylate) led to a material with the CO2 uptake outperforming all other metal-triazolate-dicarboxylate MOFs, even though most of them are decorated with amino groups, generally believed to be a key factor for high CO2 uptake. Overall, the data show that the exploration of the synergistic effect resulting from combined tuning of functional groups and pore size may be a promising strategy to develop materials with the optimum integration of geometrical and chemical factors for the highest possible gas adsorption capacity and separation performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa