Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(1): e12860, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331758

RESUMO

AIMS: Accumulation and propagation of pathological α-synuclein (α-Syn) are the major contributing factors to the pathogenesis of Parkinson's disease (PD). Therapy to halt the spreading of α-Syn pathology needs to be established. METHODS: After phage display and affinity maturation, human-derived anti-α-Syn autoantibodies were selected and applied to biochemical, cellular and animal models of PD. RESULTS: The novel naturally occurring anti-α-Syn autoantibodies (α-Syn-nAbs), P21 and P22, selectively bind α-Syn preformed fibrils (PFFs), recognise Lewy bodies (LBs) and Lewy neurites (LNs) in human PD brains, block α-Syn fibrillization and inhibit the seeding of α-Syn PFFs. Moreover, systematic administration of P21 and P22 attenuates α-Syn pathology, degeneration of the nigrostriatal pathway and motor deficits in mice injected with α-Syn PFFs. CONCLUSIONS: P21 and P22 attenuate α-synuclein pathology and are promising candidates for PD treatment.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Humanos , Animais , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Autoanticorpos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças
2.
Pharmacol Res ; 161: 105293, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176206

RESUMO

Unmethylated CpG oligodeoxynucleotides (ODNs) activate plasmacytoid dendritic cells (pDCs) and B cells to induce humoral and cellular immunity, and are under development for the treatment of multiple cancers. However, the specific differences in antitumor effects among the three CpG ODN classes when administered as a monotherapy or in co-therapy with the anti-PD-1 antibody are unclear. We compared the immunostimulatory effects in vitro and antitumor effects in a CT26 subcutaneous mouse tumor model among the three CpG ODN classes. We found that CpG-A slightly suppressed tumor growth but possessed no synergistic antitumor effects with the anti-PD-1 antibody. CpG-B at low doses significantly inhibited tumor growth and possessed synergistic antitumor effects with the anti-PD-1 antibody. A high dose of CpG-C was required to achieve antitumor effects comparable to those of CpG-B, which was consistent with the immunostimulatory effects in B-cell proliferation and TLR9-NF-κB activation. Importantly, CpG-C in combination with anti-PD-1 antibody inhibited tumor growth more quickly and effectively than CpG-B because CpG-B significantly upregulated PD-L1 expression on multiple host immune cells to promote tumor immune escape. Moreover, co-therapy increased the infiltration of effector memory T cells. In summary, CpG-B and CpG-C with different optimal concentrations possessed strong antitumor effects, while CpG-C was more rapid and effective for co-therapy with the anti-PD-1 antibody.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Ilhas de CpG , Inibidores de Checkpoint Imunológico/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor Toll-Like 9/antagonistas & inibidores , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Feminino , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral
3.
Nano Lett ; 19(11): 8021-8031, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31558024

RESUMO

Vascular disrupting agents (VDAs) have great potential in cancer treatment. However, in addition to their direct tumoral vascular collapse effect, VDAs activate host immunological responses, which can remarkably impair their anticancer efficacy. Here, a VDA nanomedicine, poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 (CA4-NPs), is found to induce the intratumor infiltration of immature plasmacytoid dendritic cells (pDCs), thereby curtailing anticancer immunity. To overcome this problem, hypoxia-sensitive imiquimod (hs-IMQ) is developed, which is selectively activated into imiquimod (IMQ) in treated tumors following the catalysis of CA4-NPs-induced nitroreductase (NTR). The combination of hs-IMQ and CA4-NPs causes a 6.3-fold enhancement of active IMQ concentration in tumors, as compared to hs-IMQ treatment alone. The in situ-generated IMQ alters the tumor microenvironment from a state of immunosuppression to immune activation. Hs-IMQ achieves this effect through the conversion of immature pDCs into their active form, leading to the robust infiltration and priming of natural killer cells and cytotoxic T-lymphocytes in treated tumors. Thus, the CA4-NPs and hs-IMQ combination treatment synergistically inhibits tumor growth and metastasis in 4T1 tumor-bearing mice. This work offers new approaches to harness intratumor pDCs to reverse the immune suppression resulting from VDA treatment. These findings additionally provide a mechanistic rationale for the use of VDAs in combination with TLR agonists to trigger in situ immune activation and enhance anticancer efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Imiquimode/uso terapêutico , Nanopartículas/uso terapêutico , Estilbenos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Imiquimode/administração & dosagem , Imunidade/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Estilbenos/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos
4.
Int J Cancer ; 144(11): 2867-2879, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565657

RESUMO

Owing to the limited therapeutic efficacy of glioma vaccines, new strategies are required to improve cancer vaccines. Our study aimed to assess the therapeutic efficacy of a glioma vaccine called STDENVANT. This vaccine, comprising glioma stem-like cell (GSC) lysate, dendritic cells (DCs), and Toll-like receptor (TLR) 9 agonist CpG motif-containing oligodeoxynucleotides (CpG ODNs), was assessed using a GL261-C57BL/6 orthotopic mouse model of glioma. STDENVANT markedly improved survival and tumor regression by enhancing anti-tumor immune function. Moreover, STDENVANT upregulated programmed death 1 (PD-1) and its ligand PD-L1 on effector T cells, DCs, and glioma tissues, resulting in the accumulation of regulatory T (Treg) cells in the brain and lymph nodes. Combinatorial administration of anti-PD-L1 antibody and STDENVANT conferred a greater survival advantage and decreased the Treg cell population in the brain. The present results indicate that PD-L1 blockade can promote tumor regression via STDENVANT in a mouse model of glioma, and combinatorial administration of anti-PD-L1 antibody and STDENVANT increases the therapeutic anti-tumor efficacy of treatment.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Glioma/terapia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Glioma/imunologia , Glioma/mortalidade , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/imunologia
5.
J Biol Chem ; 288(2): 837-47, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23179947

RESUMO

Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt(+/+)) and knock-out (Pemt(-/-)) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt(-/-) mice fed the HFHC diet, but not in their Pemt(-/-) littermates fed the HF diet. Plasma glucagon was elevated in Pemt(-/-) mice fed the HFHC diet compared with Pemt(-/-) mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt(-/-) mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt(-/-) mice through modulating plasma glucagon and its action in liver.


Assuntos
Colina/administração & dosagem , Glucagon/fisiologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Animais , Sequência de Bases , Colina/farmacologia , Primers do DNA , Gluconeogênese/efeitos dos fármacos , Teste de Tolerância a Glucose , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidiletanolamina N-Metiltransferase/genética
6.
Cell Mol Immunol ; 20(7): 808-819, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225838

RESUMO

Innate lymphoid cells (ILCs) are the counterpart of T helper cells in the innate immune system and share multiple phenotypes with T helper cells. Inducible T-cell costimulator (ICOS) is recognized on T cells and participates in T-cell activation and T and B-cell engagement in lymphoid tissues. However, the role of ICOS in ILC3s and ILC3-involved interactions with the immune microenvironment remains unclear. Here, we found that ICOS expression on human ILC3s was correlated with the activated state of ILC3s. ICOS costimulation enhanced the survival, proliferation, and capacity of ILC3s to produce cytokines (IL-22, IL-17A, IFN-γ, TNF, and GM-CSF). Via synergistic effects of ICOS and CD40 signaling, B cells promoted ILC3 functions, and ILC3-induced T-cell-independent B-cell IgA and IgM secretion primarily required CD40 signaling. Hence, ICOS is essential for the nonredundant role of ILC3s and their interaction with adjacent B cells.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Citocinas , Tecido Linfoide , Proteína Coestimuladora de Linfócitos T Induzíveis , Linfócitos B
7.
Cell Death Discov ; 7(1): 3, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431816

RESUMO

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor ß family, is associated with tumor progression, metastasis, and cell apoptosis. However, controversy persists regarding the role of GDF15 in different tumor types, and its function in glioma stem cells (GSCs) remains unknown. Here, we report that GDF15 promotes the GSC-like phenotype in GSC-like cells (GSCLCs) through the activation of leukemia inhibitor factor (LIF)-STAT3 signaling. Mechanistically, GDF15 was found to upregulate expression of the transcription factor c-Fos, which binds to the LIF promoter, leading to enhanced transcription of LIF in GSCLCs. Furthermore, GDF15 may activate the ERK1/2 signaling pathway in GSCLCs, and the upregulation of LIF expression and the GSC-like phenotype was dependent on ERK1/2 signaling. In addition, the small immunomodulator imiquimod induced GDF15 expression, which in turn activated the LIF-STAT3 pathway and subsequently promoted the GSC-like phenotype in GSCLCs. Thus, our results demonstrate that GDF15 can act as a proliferative and pro-stemness factor for GSCs, and therefore, it may represent a potential therapeutic target in glioma treatment.

8.
Front Pharmacol ; 11: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116691

RESUMO

BACKGROUND: C type CpG oligodeoxynucleotides (CpG-C ODNs), possessing the features of both A type and B type CpG ODNs, exert a variety of immunostimulatory activities and have been demonstrated as an effective antitumor immunotherapy. Based on the structural characteristics, we designed 20 potential ODNs with the aim of synthesizing an optimal, novel CpG-C ODN specific to human and murine Toll-like receptor 9 (TLR9). We also sought to investigate the in vitro immunostimulatory and in vivo antitumor effects of the novel CpG-C ODN. METHODS: Twenty potential CpG-C ODNs were screened for their ability to secrete interferon (IFN)-α, and interleukin (IL)-6 and tumor necrosis factor (TNF)-α production for the three most promising sequences were assayed in human peripheral blood mononuclear cells (PBMCs) by enzyme-linked immunosorbent assay (ELISA) or cytometric bead array assay. The functions of human and mouse B cells, and cytokine production in mice induced by the most promising sequence, HP06T07, were determined by flow cytometry and ELISA. Growth and morphology of tumor tissues in in vivo murine models inoculated with CT26 cells were analyzed by a growth inhibition assay and immunohistochemistry, respectively. RESULTS: Among the 20 designed ODNs, HP06T07 significantly induced IFN-α, IL-6, and TNF-α secretion, and promoted B-cell activation and proliferation in a dose-dependent manner in human PBMCs and mouse splenocytes in vitro. Intratumoral injection of HP06T07 notably suppressed tumor growth and prolonged survival in the CT26 subcutaneous mouse model in a dose-dependent manner. HP06T07 administered nine times at 2-day intervals (I2) eradicated tumor growth at both primary and distant sites of CT26 tumors. HP06T07 restrained tumor growth by increasing the infiltration of T cells, NK cells, and plasmacytoid dendritic cells (pDCs). CONCLUSIONS: HP06T07, a novel CpG-C ODN, shows potent immunostimulatory activity in vitro and suppresses tumor growth in the CT26 subcutaneous mouse model.

9.
Front Cell Dev Biol ; 8: 262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391356

RESUMO

Diffuse large B cell lymphoma (DLBCL) is associated with aggressive clinical cases and poor prognosis despite recent advances in disease treatment. In activated B-cell-like (ABC)-DLBCL, the most severe damaged signaling pathways converge to aberrantly activate the Toll-like receptor (TLR) 7/9/MyD88 pathways, leading to the avoidance of cell death and resistance to chemotherapy. A gain of function mutation in MyD88 (MyD88 L265P) enhanced the NF-κB and JAK-STAT signaling pathways and was associated with dysregulation of TLR signaling in the pathogenesis of ABC-DLBCL. Therefore, inhibition of the TLR signaling network may improve clinical outcomes. In this study, we designed a de novo synthesized oligodeoxynucleotide-based antagonist of TLR7 and TLR9, referred to as HJ901, which competitively binds to TLR7/9. We profiled HJ901 inhibition in various DLBCL cell lines and verified tumor suppression in a xenograft mouse model. We found that HJ901 treatment significantly reduced TLR7- and TLR9-mediated cell proliferation and cytokine production in a time- and dose-dependent manner in various DLBCL cell lines expressing the MyD88 L265P mutation. Moreover, HJ901 prevented tumor growth and downregulated the NF-κB and JAK2-STAT3 signaling pathways in a DLBCL xenograft mouse model with the MyD88 L265P mutation. These results reveal that the anti-tumor effects of the synthesized oligodeoxynucleotide-based antagonist, HJ901, which competitively binds to TLR7/9, may be associated with the downregulation of the NF-κB and JAK2-STAT3 signaling pathways and provide rationale for treating ABC-DLBCL patients with the MyD88 L265P mutation.

10.
J Immunol Res ; 2019: 1325181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781671

RESUMO

Innate lymphoid cells (ILCs) comprise a recently identified subset of innate immune cells that are mainly localized to mucosa-associated tissues. Although they have not yet been fully characterized, they can generally be divided into ILC1s, ILC2s, and ILC3s. ILCs and their corresponding cytokines act as important mediators of the early stages of the immune response during inflammation, tissue repair, and the maintenance of epithelial integrity. Consequently, the dysregulation of ILC subsets might promote inflammation and cancer. Numerous studies have demonstrated that these cells play an important role in maintaining the microecological balance of the small intestine; however, their specific roles in mediating inflammation in this tissue and tumorigenesis remain unclear and controversial. In this review, we focus on recent progress that has helped to gain a better understanding of the role of ILCs in intestinal homeostasis, chronic inflammation, and cancer. Further focused research on the regulation and role of ILCs in intestinal homeostasis and pathology will help to reveal valuable diagnostic and therapeutic targets for the treatment of intestinal diseases.


Assuntos
Enterocolite/etiologia , Enterocolite/metabolismo , Imunidade Inata , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Doença Crônica , Suscetibilidade a Doenças , Enterocolite/patologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Intestinais/patologia
11.
J Immunol Res ; 2019: 1749803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31093508

RESUMO

Plasmacytoid dendritic cells (pDCs) express high levels of the toll-like receptors (TLRs) TLR7 and TLR9. In response to TLR7 and TLR9 ligands, pDCs are primary producers of type I interferons. Our previous study demonstrated that pDCs activated by the TLR7 ligand imiquimod (IMQ) and the TLR9 ligand CpG A can kill breast cancer cells in vitro and inhibit tumor growth in vivo. Moreover, we observed a distinctive morphological, phenotypic change in pDCs after activation by IMQ and CpG A. However, the effect of other TLR7 and TLR9 ligands on pDCs remains less understood. In this study, we treat pDCs with the TLR7 ligand IMQ, TLR7/8 ligands (CL097 and CL075), and three TLR9 ligands (different types of CpGs). The size of pDCs increased significantly after activation by TLR7, or TLR7/8 ligands. TLR7, TLR7/8, and TLR9 ligands similarly modulated cytokine release, as well as protein expression of pDC markers, costimulatory molecules, and cytotoxic molecules. Interestingly, TLR7/8 ligands, especially CL097, induced stronger responses. These results are relevant to the further study of the role and mechanism of pDC-induced antitumor effects and may aid in the development of a new strategy for future tumor immunotherapy.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Imiquimode/farmacologia , Glicoproteínas de Membrana/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Feminino , Imidazóis/farmacologia , Indutores de Interferon/farmacologia , Interferon Tipo I/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Quinolinas/farmacologia , Tiazóis/farmacologia
12.
Oncotarget ; 8(4): 7157-7174, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27756892

RESUMO

Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the body's anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered "immune privileged" and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Ensaios Clínicos como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Masculino , Receptor de Morte Celular Programada 1/antagonistas & inibidores
13.
J Obes ; 2012: 319172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778916

RESUMO

Previous studies demonstrated that choline supply is directly linked to high-fat-diet-induced obesity and insulin resistance in mice. The aim of this study was to evaluate if choline supply could also modulate obesity and insulin resistance caused by a genetic defect. Eight-week-old male ob/ob mice were fed for two months with either choline-deficient or choline-supplemented diet. Tissue weight including fat mass and lean mass was assessed. Intracellular signaling, plasma glucagon and insulin, and glucose and insulin tolerance tests were also investigated. The choline-deficient diet slowed body weight gain and decreased fat mass. Choline deficiency also decreased plasma glucose level and improved glucose and insulin tolerance although fatty liver was exacerbated. Increased adipose lipolytic activity, decreased plasma glucagon and reduced expression of hepatic glucagon receptor were also observed with the choline-deficient diet. Our results demonstrate that a choline-deficient diet can decrease fat mass and improve glucose tolerance in obese and diabetic mice caused by a genetic defect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa