RESUMO
N6-methyladenosine (m6A) modifications play crucial roles in RNA metabolism. How m6A regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly m6A-modified in non-small cell lung cancer (NSCLC) cells. In A549 cells, we identified eight m6A sites on 7SK and discovered methyltransferase-like 3 (METTL3) and alkB homolog 5 (ALKBH5) as the responsible writer and eraser. When the m6A-7SK is specifically erased by a dCasRx-ALKBH5 fusion protein, A549 cell growth is attenuated due to reduction of RNA Pol II transcription. Mechanistically, removal of m6A leads to 7SK structural rearrangements that facilitate sequestration of the positive transcription elongation factor b (P-TEFb) complex, which results in reduction of serine 2 phosphorylation (Ser2P) in the RNA Pol II C-terminal domain and accumulation of RNA Pol II in the promoter-proximal region. Taken together, we uncover that m6A modifications of a non-coding RNA regulate RNA Pol II transcription and NSCLC tumorigenesis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator B de Elongação Transcricional Positiva/genética , Neoplasias Pulmonares/genética , RNA Nuclear Pequeno/genética , Transcrição Gênica , Células HeLa , Metiltransferases/genética , Metiltransferases/metabolismoRESUMO
Binding of microRNAs (miRNAs) to mRNAs normally results in post-transcriptional repression of gene expression. However, extensive base-pairing between miRNAs and target RNAs can trigger miRNA degradation, a phenomenon called target RNA-directed miRNA degradation (TDMD). Here, we systematically analyzed Argonaute-CLASH (cross-linking, ligation, and sequencing of miRNA-target RNA hybrids) data and identified numerous candidate TDMD triggers, focusing on their ability to induce nontemplated nucleotide addition at the miRNA 3' end. When exogenously expressed in various cell lines, eight triggers induce degradation of corresponding miRNAs. Both the TDMD base-pairing and surrounding sequences are essential for TDMD. CRISPR knockout of endogenous trigger or ZSWIM8, a ubiquitin ligase essential for TDMD, reduced miRNA degradation. Furthermore, degradation of miR-221 and miR-222 by a trigger in BCL2L11, which encodes a proapoptotic protein, enhances apoptosis. Therefore, we uncovered widespread TDMD triggers in target RNAs and demonstrated an example that could functionally cooperate with the encoded protein.
Assuntos
MicroRNAs , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Pareamento de Bases , MicroRNAs/genética , MicroRNAs/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genéticaRESUMO
Since its establishment in 2009, single-cell RNA sequencing (RNA-seq) has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. Although most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, with the same cell line and bioinformatics pipeline, we developed directly comparable datasets for each of three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. Although each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.
Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas Analíticas Microfluídicas , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Automação Laboratorial , Sequência de Bases , Linhagem Celular , Biologia Computacional , Análise Custo-Benefício , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Técnicas Analíticas Microfluídicas/economia , Reprodutibilidade dos Testes , Análise de Sequência de RNA/economia , Análise de Célula Única/economia , Fluxo de TrabalhoRESUMO
While linear ubiquitin plays critical roles in multiple cell signaling pathways, few substrates have been identified. Global profiling of linear ubiquitin substrates represents a significant challenge because of the low endogenous level of linear ubiquitination and the background interference arising from highly abundant ubiquitin linkages (e.g. K48- and K63-) and from the non-specific attachment of interfering proteins to the linear polyubiquitin chain. We developed a bio-orthogonal linear ubiquitin probe by site-specific encoding of a norbornene amino acid on ubiquitin (NAEK-Ub). This probe facilitates covalent labeling of linear ubiquitin substrates in live cells and enables selective enrichment and identification of linear ubiquitin-modified proteins. Given the fact that the frequent overexpression of the linear linkage-specific deubiquitinase OTULIN correlates with poor prognosis in glioblastoma, we demonstrated the feasibility of the NAEK-Ub strategy by identifying and validating substrates of linear ubiquitination in patient-derived glioblastoma stem-like cells (GSCs). We identified STAT3 as a bona fide substrate of linear ubiquitin, and showed that linear ubiquitination negatively regulates STAT3 activity by recruitment of the phosphatase TC-PTP to STAT3. Furthermore, we demonstrated that preferential expression of OTULIN in GSCs restricts linear ubiquitination on STAT3 and drives persistent STAT3 signaling, and thereby maintains the stemness and self-renewal of GSCs.
Assuntos
Glioblastoma , Fator de Transcrição STAT3 , Ubiquitina , Humanos , Poliubiquitina/genética , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
Modulating the electronic properties of transition metal sites in photocatalysts at the atomic level is essential for achieving high-activity carbon dioxide photoreduction (CO2PR). An electronic strategy is herein proposed to engineer In-d-band center of InVO4 by incorporating MnOx nanoparticles and oxygen vacancies (VO) into holey InVO4 nanobelts (MnOx/VO-InVO4), which synergistically modulates the In-d-band center to a moderate level and consequently leads to high-efficiency CO2PR. The MnOx/VO-InVO4 catalyst with optimized electronic property exhibits a single carbon evolution rate of up to 145.3 µmol g-1 h-1 and a carbon monoxide (CO) product selectivity of 92.6%, coming out in front of reported InVO4-based materials. It is discovered that the modulated electronic property favors the interaction between the In sites and their intermediates, which thereby improves the thermodynamics and kinetics of the CO2PR-to-CO reaction. This work not only demonstrates the effective engineering of the d orbital of the low-coordination In atoms to promote CO2PR, but also paves the way for the application of tuning d-band center to develop high-efficiency catalysts.
RESUMO
Cellulose has been widely used in papermaking, textile, and chemical industries due to its diverse sources, environmental friendliness, and renewability. Recently, much more attention has been paid to converting cellulose into high-value-added products. Therefore, the extraction of nanocellulose, the dissolution of cellulose, and their applications are some of the most important research topics currently. However, cellulose's dense hydrogen bond network poses challenges for efficient extraction and dissolution, limiting its potential for functional material development. This review discusses the mechanisms of hydrogen bond disruption and weak interactions during nanocellulose extraction and cellulose dissolution. Key challenges and future research directions are highlighted, emphasizing developing efficient, ecofriendly, and cost-effective methods. Additionally, this review provides theoretical insights for constructing high-performance cellulose-based materials.
Assuntos
Celulose , Ligação de Hidrogênio , Celulose/químicaRESUMO
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/terapia , Feminino , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Fotoquimioterapia/métodos , Compostos Inorgânicos/químicaRESUMO
METHODS: Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1ß. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS: CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1ß, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION: The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Assuntos
Hidrogéis , Degeneração do Disco Intervertebral , Núcleo Pulposo , Peptídeos , Regeneração , Animais , Hidrogéis/química , Núcleo Pulposo/metabolismo , Camundongos , Degeneração do Disco Intervertebral/terapia , Regeneração/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Disco Intervertebral , Humanos , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Movimento Celular/efeitos dos fármacosRESUMO
BACKGROUND: The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS: Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS: Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS: Our findings suggest eMSC improves regeneration of injured endometrium in mice.
Assuntos
Células-Tronco Mesenquimais , Doenças Uterinas , Camundongos , Feminino , Humanos , Gravidez , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/patologia , Endométrio/metabolismo , Endométrio/patologia , Doenças Uterinas/terapia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , FibroseRESUMO
BACKGROUND: Photo-ageing is a form of skin ageing which affects the entire face. A photo-aged skin has a diverse variety of wrinkles and dyspigmentation all over the face. Here, we discuss photo-ageing on the Chinese skin evaluated using a photo-numeric scale developed and validated on Caucasian skin (i.e., Caucasian scale) and evaluated using a photo-numeric scale developed and validated on Korean skin (i.e., Korean scale). The Korean scale can be subdivided into two scales that separately address the wrinkling and dyspigmentation constituents of photo-ageing. AIM: As there are currently no photo-ageing scales for Chinese skin, the main objective of this study is to adapt existing photo-ageing photo-numeric scales for use on ethnic Chinese skin. METHOD: Three trained assessors studied facial photo-ageing on 1,081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. RESULTS: All assessors are highly internally consistent (Weighted Kappa (κw) values≥0.952). We found that the Caucasian scale and Korean scale give nearly synonymous results for the wrinkling constituent of photo-ageing (R2 = 0.9386). The two scales are strongly concordant (Spearman's Rank Correlation (ρ) value: 0.62 ± 0.06, p = 1.31×10-84). A weak-to-moderate inter-scalar level of agreement (Cohen's Kappa (κ) values: 0.38 ± 0.05, p = 8.87×10-53) persists and is statistically significant after accounting for agreements due to chance. When tested on ethnic Chinese skin, both scales detect photo-ageing consistently (Area under curve [AUC] values: 0.76-0.84). Additionally, the Korean scale for the dyspigmentation constituent of photo-ageing is concordant with both the Caucasian scale (R2 = 0.7888) and the Korean scale for the wrinkling constituent of photo-ageing (R2 = 0.7734). CONCLUSION: Our results show that the Caucasian scale is suitable for capturing photo-ageing on Chinese skin, especially wrinkle variations. The Korean dyspigmentation scale supplements the Caucasian scale to capture dyspigmentation patterns on Chinese skin that may be absent on Caucasian skin. Currently, photo-ageing scales for Chinese skin are absent. When developed, these photo-ageing scales must be properly validated for their ability to capture photo-ageing of the entire face.
Assuntos
População do Leste Asiático , Envelhecimento da Pele , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Estudos de Coortes , Estudos Transversais , Face , Fotografação , Reprodutibilidade dos Testes , República da Coreia/etnologia , República da Coreia/epidemiologia , Singapura/epidemiologia , Envelhecimento da Pele/genética , População BrancaRESUMO
BACKGROUND: Symptomatic lumbar disc herniation (LDH) and lumbar isthmic spondylolisthesis (LIS) present significant challenges for military pilots, which may result in grounding if not effectively managed. Surgical treatment for LDH and LIS may offer a pathway to return to flight duty (RTFD), but recent data on this crucial topic is lacking. This study seeks to address this gap by investigating the RTFD outcomes among Chinese military pilots who have undergone lumbar spine surgery for symptomatic LDH and LIS. METHODS: A retrospective review was conducted on active-duty military pilots who underwent isolated decompressive or fusion procedures at an authorized military medical center from March 1, 2007, to March 1, 2023. The analysis utilized descriptive statistics to examine demographic, occupational, surgical, and outcome data, with a particular focus on preoperative flight status, recommended clearance by spine surgeons, and actual RTFD outcomes and time. RESULTS: Among the identified cases of active-duty military pilots with LDH or LIS treated by lumbar surgery (n = 24), 70.8% (17 of 24) consistently maintained RTFD status without encountering surgical complications or medical issues during the follow-up period. Of the seven pilots who did not RTFD, one retired within a year of surgery, two had anterior cruciate ligament injuries, three had residual radicular symptoms, and one had chronic low back pain. Excluding pilots who retired and did not RTFD for reasons unrelated to their lumbar conditions, the RTFD rate stood at 81.0% (17 of 21). The median time for recommended clearance by spine surgeons was 143.0 days (inter-quartile range, 116.5-196.0), while the median duration for actual RTFD attainment was 221.0 days (inter-quartile range, 182.0-300.0). The median follow-up post-lumbar surgery was 1.7 years (inter-quartile range, 0.4-2.9). CONCLUSION: Most military pilots diagnosed with symptomatic LDH and LIS can continue their careers and regain active-duty flight status following lumbar spine surgery, as reflected by the high RTFD rate. Lumbar spine surgery can successfully alleviate the physical constraints associated with spinal conditions, facilitating the return of military pilots to their demanding profession.
Assuntos
Deslocamento do Disco Intervertebral , Militares , Fusão Vertebral , Espondilolistese , Humanos , Deslocamento do Disco Intervertebral/epidemiologia , Deslocamento do Disco Intervertebral/cirurgia , Espondilolistese/epidemiologia , Espondilolistese/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Vértebras Lombares/cirurgia , China/epidemiologia , Fusão Vertebral/métodosRESUMO
MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched for the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed gene products are associated with eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone calnexin as a direct miR-320a down-regulated target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. In summary, our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.
Assuntos
Fator 4 Ativador da Transcrição/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Ribonuclease III/genética , Antagomirs/genética , Proteínas Argonautas/genética , Calnexina/genética , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/genética , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Transdução de Sinais/genética , Sítio de Iniciação de TranscriçãoRESUMO
Aedes albopictus, a common mosquito in Zhejiang Province, is a carrier of more than twenty arboviruses. There are dozens or even hundreds of imported cases of dengue fever every year in Zhejiang Province, and there have also been many local outbreaks caused by imported cases of dengue fever. The objectives were to assess the resistance of larvae and adults of several Ae. albopictus strains in Zhejiang Province to commonly used pyrethroid insecticides (beta-cypermethrin, deltamethrin and permethrin), and detect mutations in the sodium channel gene, to further analyse the relationship between phenotypic resistance and the frequency of mutations. The resistance of eight field strains of Ae. albopictus larvae to beta-cypermethrin, deltamethrin and permethrin ranged from 8.17 to 36.06, 12.12-107.3 and 1.55-81.9, respectively, and there was a significant positive correlation of interaction resistance among the three insecticides. The mutation frequencies of I1532T and F1534S in the larvae of Ae. albopictus were 0-6.25â¯% and 42.19-100.00â¯%. Moreover, the diagnostic doses of the three pyrethroids for adult Ae. albopictus mosquitoes were 0.2510â¯g/L, 0.1562â¯g/L, and 0.9072â¯g/L. Except for the Zhoushan strain, which was suspected to be resistant to beta-cypermethrin, the other field strains were resistant to the three pyrethroids, and there was a significant positive correlation of cross-resistance among the three insecticides. The mutation frequencies of I1532T and F1534S of adult Ae. albopictus were 0-1.56â¯% and 62.50-100.00â¯%. In addition, the LC50 of the larvae and the mortality rate of adult Ae. albopictus after treatment with the three pyrethroids were significantly and positively correlated with the frequency of the F1534S mutation. F1534S mutation occurred earlier than I1532T mutation in both larvae and adult Ae. albopictus. F1534S mutation in the sodium channel gene may be a particular biomolecular detection marker for resistance to pyrethroid insecticides in Ae. albopictus in Zhejiang Province.
Assuntos
Aedes , Bioensaio , Resistência a Inseticidas , Inseticidas , Larva , Mutação , Nitrilas , Piretrinas , Animais , Aedes/genética , Aedes/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/genética , Piretrinas/toxicidade , China , Nitrilas/toxicidade , Permetrina/toxicidade , Permetrina/farmacologia , Canais de Sódio/genética , Canais de Sódio/efeitos dos fármacos , Feminino , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genéticaRESUMO
Current challenges in visible and infrared image fusion include color information distortion, texture detail loss, and target edge blur. To address these issues, a fusion algorithm based on double-domain transform filter and nonlinear contrast transform feature extraction (DDCTFuse) is proposed. First, for the problem of incomplete detail extraction that exists in the traditional transform domain image decomposition, an adaptive high-pass filter is proposed to decompose images into high-frequency and low-frequency portions. Second, in order to address the issue of fuzzy fusion target caused by contrast loss during the fusion process, a novel feature extraction algorithm is devised based on a novel nonlinear transform function. Finally, the fusion results are optimized and color-corrected by our proposed spatial-domain logical filter, in order to solve the color loss and edge blur generated in the fusion process. To validate the benefits of the proposed algorithm, nine classical algorithms are compared on the LLVIP, MSRS, INO, and Roadscene datasets. The results of these experiments indicate that the proposed fusion algorithm exhibits distinct targets, provides comprehensive scene information, and offers significant image contrast.
RESUMO
Objective To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.Methods The small interfering RNA (siRNA) was transfected to knock down ABI3BP gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on ABI3BP knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.Results The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of ABI3BP in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after ABI3BP gene knockdown. Compared with the control group, the gene copy number of VSV-GFP in ABI3BP knockdown cells increased by 2.2 - 3.5 times (P<0.01) and 2.2 - 4.0 times (P<0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in ABI3BP knockdown cells after virus infection. The activation of type-I interferon pathway, as determined by phosphorylated IRF3 and phosphorylated TBK1, was significantly decreased in ABI3BP knockdown cells after VSV-GFP infection.Conclusions Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure. ABI3BP gene deletion promotes RNA virus replication, and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.
Assuntos
Estomatite Vesicular , Animais , Humanos , Estomatite Vesicular/metabolismo , Actinas/genética , Actinas/metabolismo , Faloidina/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Antivirais , Proteínas da Matriz Extracelular/metabolismo , Proteínas de TransporteRESUMO
Although closed-loop recycling of dynamic covalent bond-based plastics does not require catalysts, their mechanical strength and chemical stability remain a major concern. In this study, closed-loop recyclable poly(aryl imine) (PAI) plastics with high mechanical strength and excellent chemical resistance are fabricated by copolymerizing aromatic amines and aromatic aldehydes through dynamic imine bonds. The resulting PAI plastic with a tensile strength of 58.2â MPa exhibits excellent chemical resistance and mechanical stability in acidic and basic aqueous solutions and various organic solvents. The PAI plastics can be depolymerized in a mixed solvent of tetrahydrofuran (THF)/HCl aqueous solution through the dissociation of imine bonds, and the monomers can be facilely recovered with high purity and isolated yields due to the solubility difference between the aromatic amines and aromatic aldehydes in selective solvents. The efficient closed-loop recycling of the PAI plastic can also be realized through monomer conversion because the hydrolysis of the aromatic aldehydes generates aromatic amines. The recovered monomers can be used to re-fabricate original PAI plastics. This PAI plastic can be selectively recovered from complicated mixed polymer waste streams due to the mild depolymerization conditions of the PAI plastic and its high stability in most organic solvents.
RESUMO
Halogenated organic compounds in wastewater are persistent and bioaccumulative contaminants of great concern, but few are known at the molecular level. Herein, we focus on nontarget screening of halogenated dissolved organic matter (DOM) in highly concentrated organic matrices of waste leachates and their concentrates. Solid-phase extraction (SPE) was optimized before capturing halogenated signatures via HaloSeeker 2.0 software on mining full-scan high-resolution mass spectrometry (HRMS) fingerprints. This study identified 438 Cl-/Br-containing DOM formulas in 21 leachates and membrane concentrates. Among them, 334 formulas were achieved via SPE with mixed-sorbent cartridges (mixed-SPE), surpassing the 164 formulas achieved through Bond Elut PPL cartridges (PPL-SPE). Herein, only four samples identified via PPL-SPE exhibited a resolution of >50% for extracted Cl-/Br-containing DOM by either SPE. The halogenated DOM constituted 6.87% of the total DOM mass features. Nevertheless, more abundant adsorbable organic halogens deciphered waste leachates and highly concentrated waste streams as reservoirs for halogenated contaminants. Remarkably, 75.7-98.1% of Cl-/Br-containing DOM in primary membrane concentrates remained stable through the secondary membrane treatment, indicating the persistence of these unknown contaminants even post-treatment.
Assuntos
Matéria Orgânica Dissolvida , Compostos Orgânicos , Espectrometria de Massas , Compostos Orgânicos/análise , Águas Residuárias , Extração em Fase Sólida/métodosRESUMO
Dengue fever is one of the biggest threats to public health in China, causing huge disease burden and economic loss. Aedes-mosquito surveillance could be a cornerstone for predicting the risk of Aedes-borne diseases and evaluating the effect of vector management during diseases outbreaks. The human landing catch (HLC) method is regarded as the "gold standard" for catching Aedes mosquitoes, but it potentially exposes field professionals to vectors of known or unknown pathogens. Human-baited double net (HDN) was recommended to replace HLC for emergency monitoring in China when Aedes-borne diseases break out, but it had been reported with low efficiency for capturing Aedes mosquitoes. In this study, we compared HLC with HDN and BG traps for field Aedes albopictus monitoring, with the aim of evaluating the effectiveness of HDN replacing HLC and finding an effective and safe alternative to the HLC for monitoring Aedes albopictus. Six sites in Hangzhou, Shaoxing, and Yiwu, Zhejiang Province, China, were chosen to conduct outdoor HLC, HDN, and BG trap catches from June to October 2021. The tests were performed 3 h apart: 8:30-9:30 AM, 16:30-17:30 PM, and 17:30-18:30 PM. A total of 2330 adult mosquitoes were collected, and Aedes albopictus was the most abundant species in all three catches with 848(98.95%), 559(97.39%) and 867 (96.44%) caught in HLC, HDN and BG traps respectively. Compared to HLC, HDN collected significantly less Ae. albopictus and Ae. albopictus females per trapping period (P < 0.001, P < 0.001), whereas no statistical differences were found between the HLC and BG trap (P = 0.970, P > 0.05). Statistically significant positive spatial correlations for Ae. albopictus sampling was found between HLC and HDN traps (r = 0.543, P < 0.001) and HLC and BG traps (r = 0.658, P < 0.001). In conclusion, both the BG trap and HDN have a significant positive spatial correlation with HLC, making them safer alternatives to HLC for Ae. albopictus monitoring in China. However, with better a sampling efficiency, being less labor intensive, and no human-baited attraction bias, the BG trap could be a better choice than the HDN trap.
Assuntos
Aedes , Adulto , Animais , Feminino , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores , ChinaRESUMO
BACKGROUND: Minimally invasive vascular intervention (MIVI) is a powerful technique for the treatment of cardiovascular diseases, such as abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and aortic dissection (AD). Navigation of traditional MIVI surgery mainly relies only on 2D digital subtraction angiography (DSA) images, which is hard to observe the 3D morphology of blood vessels and position the interventional instruments. The multi-mode information fusion navigation system (MIFNS) proposed in this paper combines preoperative CT images and intraoperative DSA images together to increase the visualization information during operations. RESULTS: The main functions of MIFNS were evaluated by real clinical data and a vascular model. The registration accuracy of preoperative CTA images and intraoperative DSA images were less than 1 mm. The positioning accuracy of surgical instruments was quantitatively assessed using a vascular model and was also less than 1 mm. Real clinical data used to assess the navigation results of MIFNS on AAA, TAA and AD. CONCLUSIONS: A comprehensive and effective navigation system was developed to facilitate the operation of surgeon during MIVI. The registration accuracy and positioning accuracy of the proposed navigation system were both less than 1 mm, which met the accuracy requirements of robot assisted MIVI.
Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Cirurgia Assistida por Computador/métodos , Angiografia Digital , Imageamento Tridimensional/métodosRESUMO
A total synthesis approach of CS-E oligosaccharides was established and a series of derivatives were synthesized. These oligosaccharides were evaluated for a glycosaminoglycan (GAG)-binding protein interaction against cytokines, midkine, and pleiotrophin, by surface-plasmon resonance (SPR) assay. The binding epitopes of oligosaccharides to midkine were mapped using a saturation transfer difference (STD) NMR technique. The groups on the reducing end contributed to binding affinity, and should not be ignored in biological assays. These findings contribute to the structure and activity relationship research and a foundation of understanding that will underpin potential future optimization of this class of oligosaccharides as pharmaceutical agents.