Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
2.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240781

RESUMO

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Nociceptores/fisiologia , Substância P , Disbiose , Inflamação
3.
Nature ; 611(7936): 578-584, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323778

RESUMO

Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.


Assuntos
Ácidos e Sais Biliares , Fibras na Dieta , Microbioma Gastrointestinal , Inflamação , Inulina , Animais , Humanos , Camundongos , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Imunidade Inata , Inflamação/induzido quimicamente , Inflamação/classificação , Inflamação/patologia , Inulina/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Metabolômica , Pulmão/efeitos dos fármacos , Pulmão/patologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Interleucina-33/metabolismo , Eosinófilos/citologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia
4.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091362

RESUMO

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Assuntos
Parasitos , Fosfoproteínas Fosfatases , Toxoplasma , Animais , Humanos , Camundongos , Domínio Catalítico , Ciclo Celular/genética , Divisão Celular , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Virulência/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
5.
Nucleic Acids Res ; 51(2): 619-630, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36546827

RESUMO

Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Caseína Quinase II , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfotransferases/genética , Caseína Quinase II/metabolismo
6.
Br J Cancer ; 130(7): 1109-1118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341511

RESUMO

BACKGROUND: 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS: OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS: Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS: The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Intervalo Livre de Doença , Receptor ErbB-2 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
7.
Plant Physiol ; 192(1): 616-632, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732924

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo
8.
Cardiovasc Diabetol ; 23(1): 93, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468331

RESUMO

BACKGROUND: Stress hyperglycemia ratio (SHR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are independently associated with increased mortality risk in diabetic patients with coronary artery disease (CAD). However, the role of these biomarkers in patients with diabetes and multivessel disease (MVD) remains unknown. The present study aimed to assess the relative and combined abilities of these biomarkers to predict all-cause mortality in patients with diabetes and MVD. METHODS: This study included 1148 diabetic patients with MVD who underwent coronary angiography at Tianjin Chest Hospital between January 2016 and December 2016. The patients were divided into four groups according to their SHR (SHR-L and SHR-H) and NT-proBNP (NT-proBNP-L and NT-proBNP-H) levels. The primary outcome was all-cause mortality. Multivariate Cox regression analyses were performed to evaluate the association of SHR and NT-proBNP levels with all-cause mortality. RESULTS: During a mean 4.2 year follow-up, 138 patients died. Multivariate analysis showed that SHR and NT-proBNP were strong independent predictors of all-cause mortality in diabetic patients with MVD (SHR: HR hazard ratio [2.171; 95%CI 1.566-3.008; P < 0.001; NT-proBNP: HR: 1.005; 95%CI 1.001-1.009; P = 0.009). Compared to patients in the first (SHR-L and NT-proBNP-L) group, patients in the fourth (SHR-H and NT-proBNP-H) group had the highest mortality risk (HR: 12.244; 95%CI 5.828-25.721; P < 0.001). The areas under the curve were 0.615(SHR) and 0.699(NT-proBNP) for all-cause mortality. Adding either marker to the original models significantly improved the C-statistic and integrated discrimination improvement values (all P < 0.05). Moreover, combining SHR and NT-proBNP levels into the original model provided maximal prognostic information. CONCLUSIONS: SHR and NT-proBNP independently and jointly predicted all-cause mortality in diabetic patients with MVD, suggesting that strategies to improve risk stratification in these patients should incorporate SHR and NT-porBNP into risk algorithms.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Hiperglicemia , Humanos , Peptídeo Natriurético Encefálico , Doença da Artéria Coronariana/diagnóstico por imagem , Prognóstico , Biomarcadores , Fragmentos de Peptídeos , Hiperglicemia/complicações , Hiperglicemia/diagnóstico
9.
FASEB J ; 37(6): e22932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115746

RESUMO

Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.


Assuntos
Antioxidantes , Toxoplasma , Animais , Camundongos , Glutarredoxinas/genética , Toxoplasma/genética , Sequência de Aminoácidos , Virulência , Oxirredução , Estresse Oxidativo
10.
Horm Metab Res ; 56(2): 159-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992721

RESUMO

Nonalcoholic fatty liver disease and diabetes always coexist. The relationship of fatty liver and hyperglycemia is not clear. We studied the influence of hyperglycemia on triglyceride (TG) accumulation in the liver and explored its possible mechanisms. SD rats were divided into three groups: Group A (sham operation control), Group B (partially pancreatectomized rats), and Group C (partially pancreatectomized rats treated with insulin). At 4 weeks after surgery, pancreatic weights and liver TG contents were measured. Serum biochemical parameters were determined, and oral glucose tolerance tests (OGTT) were performed. The gene expression of sterol regulatory element-binding protein1c (SREBP-1c), carbohydrate regulatory element-binding protein (ChREBP), fatty acid synthase(FAS), carnitine palmitoyltransferase 1 (CPT-1), and fibroblast growth factor 21 (FGF21) was determined by real-time PCR. Compared with Group A, postprandial glucose increased significantly; the concentrations of insulin and C-peptides, pancreatic weights and serum FGF21 levels were decreased, liver TG was increased significantly in Group B, and insulin treatment improved these changes. Compared with Group A, the gene expressions of FGF21, CPT-1 and FAS in the liver were decreased in Group B (all p<0.05). Compared with Group B, the gene expressions of FGF21, FAS, ChREBP, SREBP-1c and CPT-1 in the liver in Group C were all increased significantly (p<0.05, respectively). Hyperglycemia induced by partial pancreatectomy could lead to increased liver TG. Insulin treatment could decrease glucose levels and improve fatty liver, and genes related to lipid metabolism may play a role in this process.


Assuntos
Hiperglicemia , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Triglicerídeos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos/genética , Insulina/metabolismo , Glucose/metabolismo
11.
Inorg Chem ; 63(1): 642-652, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38131603

RESUMO

The design of hierarchical electrocatalysts with plentiful active sites and high mass transfer efficiency is critical to efficiently and sustainably carrying out the oxygen evolution reaction (OER), which presents a challenging and pressing need. In this study, a hierarchical Ni(OH)2@NiFe-Prussian blue analogue nanoarray grown on nickel foam (NF) [labeled as Ni(OH)2@NiFe-PBA/NF] was synthesized by combining a mild electrodeposition method with an ion-exchange strategy. The resultant Ni(OH)2@NiFe-PBA/NF displays superhydrophilic/superaerophobic properties that optimize the contact with the electrolyte, improve mass transfer efficiency, and expedite detachment of O2 bubbles during the electrocatalytic OER. Specifically, Ni(OH)2@NiFe-PBA/NF exhibits exceptional capability in the OER with low overpotentials of 224 and 240 mV at the current densities of 50 and 100 mA cm-2, respectively, accompanied by a low Tafel slope of 37.1 mV dec-1 and outstanding stability over 100 h at a fixed potential of 1.78 V vs reversible hydrogen electrode (RHE). Furthermore, Ni(OH)2@NiFe-PBA/NF demonstrates remarkable OER performance even in alkaline simulated seawater. During the OER process, active metal-OOH intermediates were formed by the partial self-reconstruction of NiFe-PBA in the heterostructure, as revealed by in situ Raman spectroscopy.

12.
Exp Cell Res ; 429(2): 113666, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271250

RESUMO

TM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques. Our results showed that TM6SF2 reduced lipid accumulation in oxLDL-stimulated VSMCs, likely through the regulation of lectin-like oxLDL receptor 1 (LOX-1) and scavenger receptor cluster of differentiation 36 (CD36) expression. We concluded that TM6SF2 plays a role in HAVSMC lipid metabolism with opposing effects on cellular lipid droplet content by downregulation of LOX-1 and CD36 expression.


Assuntos
Músculo Liso Vascular , Receptores Depuradores Classe E , Humanos , Músculo Liso Vascular/metabolismo , Receptores Depuradores Classe E/genética , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação para Baixo , Fígado/metabolismo , Proteínas de Membrana/metabolismo
13.
Acta Pharmacol Sin ; 45(1): 23-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644131

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Humanos , Volume Sistólico/fisiologia , Comorbidade , Descoberta de Drogas
14.
BMC Geriatr ; 24(1): 220, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438862

RESUMO

OBJECTIVE: To analyse and discuss the association of gender differences with the risk and incidence of poststroke aphasia (PSA) and its types, and to provide evidence-based guidance for the prevention and treatment of poststroke aphasia in clinical practice. DATA SOURCES: Embase, PubMed, Cochrane Library and Web of Science were searched from January 1, 2002, to December 1, 2023. STUDY SELECTION: Including the total number of strokes, aphasia, the number of different sexes or the number of PSA corresponding to different sex. DATA EXTRACTION: Studies with missing data, aphasia caused by nonstroke and noncompliance with the requirements of literature types were excluded. DATA SYNTHESIS: 36 papers were included, from 19 countries. The analysis of 168,259 patients with stroke and 31,058 patients with PSA showed that the risk of PSA was 1.23 times higher in female than in male (OR = 1.23, 95% CI = 1.19-1.29, P < 0.001), with a prevalence of PSA of 31% in men and 36% in women, and an overall prevalence of 34% (P < 0.001). Analysis of the risk of the different types of aphasia in 1,048 patients with PSA showed a high risk in females for global, broca and Wenicke aphasia, and a high risk in males for anomic, conductive and transcortical aphasia, which was not statistically significant by meta-analysis. The incidence of global aphasia (males vs. females, 29% vs. 32%) and broca aphasia (17% vs 19%) were higher in females, and anomic aphasia (19% vs 14%) was higher in males, which was statistically significant (P < 0.05). CONCLUSIONS: There are gender differences in the incidence and types of PSA. The risk of PSA in female is higher than that in male.


Assuntos
Afasia , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Incidência , Afasia/diagnóstico , Afasia/epidemiologia , Afasia/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/epidemiologia , Cooperação do Paciente
15.
Bioprocess Biosyst Eng ; 47(6): 957-969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717593

RESUMO

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.


Assuntos
Lactobacillus , Ácido gama-Aminobutírico , Bebidas , Fermentação , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Glutamato de Sódio/metabolismo
16.
Sheng Li Xue Bao ; 76(3): 376-384, 2024 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-38939932

RESUMO

The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.


Assuntos
Envelhecimento , Músculo Esquelético , Junção Neuromuscular , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ratos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Proteínas Musculares/metabolismo , Treinamento Resistido/métodos , Proteína Forkhead Box O1
17.
Angew Chem Int Ed Engl ; : e202407090, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840270

RESUMO

Low *CO coverage on the active sites is a major hurdle in the tandem electrocatalysis, resulting in unsatisfied C2H4 production efficiencies. In this work, we developed a synergetic-tandem strategy to construct a copper-based composite catalyst for the electroreduction of CO2 to C2H4, which was constructed via the template-directed polymerization of ultrathin Cu(II) porphyrin organic framework incorporating atomically isolated Cu(II) porphyrin and Cu(II) bipyridine sites on a carbon nanotube (CNT) scaffold, and then Cu2O nanoparticles were uniformly dispersed on the CNT scaffold. The presence of dual active sites within the Cu(II) porphyrin organic framework create a synergetic effect, leading to an increase in local *CO availability to enhance the C-C coupling step implemented on the adjacent Cu2O nanoparticles for further C2H4 production. Accordingly, the resultant catalyst affords an exceptional CO2-to-C2H4 Faradaic efficiency (FEC2H4) of 71.0% at -1.1 V vs reversible hydrogen electrode (RHE), making it one of the most effective copper-based tandem catalysts reported to date. The superior performance of the catalyst is further confirmed through operando infrared spectroscopy and theoretic calculations.

18.
Plant J ; 111(1): 269-281, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506310

RESUMO

Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Bioenerg Biomembr ; 55(3): 195-205, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237241

RESUMO

Adipose tissue-derived mesenchymal stem cells (ADSCs) have promising effects on nerve repair due to the differentiation ability to neural cells. Ghrelin has been shown to promote the neural differentiation of ADSCs. This work was designed to explore its underlying mechanism. Herein, we found high expression of LNX2 in ADSCs after neuronal differentiation. Knockdown of LNX2 might block neuronal differentiation of ADSCs, as evidenced by the decreased number of neural-like cells and dendrites per cell, and the reduced expressions of neural markers (including ß-Tubulin III, Nestin, and MAP2). We also demonstrated that LNX2 silencing suppressed the nuclear translocation of ß-catenin in differentiated ADSCs. Luciferase reporter assay indicated that LNX2 inhibited wnt/ß-catenin pathway by reducing its transcriptional activity. In addition, results showed that LNX2 expression was increased by ghrelin, and its inhibition diminished the effects of ghrelin on neuronal differentiation. Altogether, the results suggest that LNX2 is involved in the role of ghrelin to facilitate neuronal differentiation of ADSCs.


Assuntos
Grelina , Células-Tronco Mesenquimais , beta Catenina , beta Catenina/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Grelina/farmacologia , Grelina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Humanos
20.
Plant Physiol ; 190(4): 2812-2827, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36173345

RESUMO

Regulation of seed germination is important for plant survival and propagation. ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the central transcription factor in the ABA signaling pathway, plays a fundamental role in the regulation of ABA-responsive gene expression during seed germination; however, how ABI5 transcriptional activation activity is regulated remains to be elucidated. Here, we report that C-type Cyclin1;1 (CycC1;1) is an ABI5-interacting partner affecting the ABA response and seed germination in Arabidopsis (Arabidopsis thaliana). The CycC1;1 loss-of-function mutant is hypersensitive to ABA, and this phenotype was rescued by mutation of ABI5. Moreover, CycC1;1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes including ABI5 itself by occupying their promoters and disrupting RNA polymerase II recruitment; thus the cycc1;1 mutant shows increased expression of ABI5 and genes downstream of ABI5. Furthermore, ABA reduces the interaction between CycC1;1 and ABI5, while phospho-mimic but not phospho-dead mutation of serine-42 in ABI5 abolishes CycC1;1 interaction with ABI5 and relieves CycC1;1 inhibition of ABI5-mediated transcriptional activation of downstream target genes. Together, our study illustrates that CycC1;1 negatively modulates the ABA response by interacting with and inhibiting ABI5, while ABA relieves the CycC1;1 interaction with and inhibition of ABI5 to activate ABI5 activity for the ABA response, thereby inhibiting seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa