Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2219024120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716360

RESUMO

Postoperative adhesions occur widely in various tissues, bringing the risk of secondary surgery and increased medical burden. Hydrogel barriers with Janus-adhesive ability can achieve physical isolation of adjacent tissues and are therefore considered an ideal solution. However, integrating endoscopic delivery convenience and viscoelastic Janus hydrogel formation remains a great challenge. Here, we present a report of the in situ formation of Janus-adhesive hydrogel barrier using a sprayable fast-Janus-gelation (FJG) powder. We first methacrylate the polysaccharide macromolecules to break the intermolecular hydrogen bonds and impart the ability of rapid hydration. FJG powder can rapidly absorb interfacial water and crosslink through borate ester bonds, forming a toughly adhesive viscoelastic hydrogel. The Janus barrier can be simply formed by further hydrating the upper powder with cationic solution. We construct rat models to demonstrate the antiadhesions efficiency of viscoelastic FJG hydrogels in organs with different motion modalities (e.g., intestine, heart, liver). We also developed a low-cost delivery device with a standardized surgical procedure and further validated the feasibility and effectiveness of FJG powder in minimally invasive surgery using a preclinical translational porcine model. Considering the advantages in terms of therapeutic efficacy, clinical convenience, and commercialization, our results reveal the great potential of Janus-gelation powder materials as a next-generation antiadhesions barrier.


Assuntos
Adesivos , Hidrogéis , Ratos , Animais , Suínos , Hidrogéis/química , Pós , Aderências Teciduais/prevenção & controle , Água
2.
Exp Cell Res ; 439(1): 114096, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768700

RESUMO

Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.


Assuntos
Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Macrófagos , Neovascularização Fisiológica , Osteogênese , Humanos , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Macrófagos/metabolismo , Ratos , Células Endoteliais/metabolismo , Movimento Celular , Ratos Sprague-Dawley , Regeneração Óssea/fisiologia , Camundongos , Células Cultivadas , Masculino , Angiogênese
3.
Proc Natl Acad Sci U S A ; 119(35): e2201975119, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994652

RESUMO

SrTiO3, a quantum paralectric, displays a detectable phonon thermal Hall effect (THE). Here, we show that the amplitude of the THE is extremely sensitive to stoichiometry. It drastically decreases upon substitution of a tiny fraction of Sr atoms with Ca, which stabilizes the ferroelectric order. It drastically increases by an even lower density of oxygen vacancies, which turn the system to a dilute metal. The enhancement in the metallic state exceeds by far the sum of the electronic and the phononic contributions. We explain this observation as an outcome of three features: 1) Heat is mostly transported by phonons; 2) the electronic Hall angle is extremely large; and 3) there is substantial momentum exchange between electrons and phonons. Starting from Herring's picture of phonon drag, we arrive to a quantitative account of the enhanced THE. Thus, phonon drag, hitherto detected as an amplifier of thermoelectric coefficients, can generate a purely thermal transverse response in a dilute metal with a large Hall angle. Our results reveal a hitherto-unknown consequence of momentum-conserving collisions between electrons and phonons.

4.
Environ Microbiol ; 26(5): e16622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757466

RESUMO

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Assuntos
Bactérias , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Rios/microbiologia , Rios/química , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução , Filogeografia , Filogenia , Microbiota
5.
BMC Biol ; 21(1): 2, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600240

RESUMO

BACKGROUND: The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS: We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS: This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.


Assuntos
Mariposas , Animais , Estações do Ano , Mariposas/genética , Larva , Perfilação da Expressão Gênica , Cromossomos
6.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474929

RESUMO

An exhaust gas recirculation (EGR) valve is used to quickly and dynamically adjust the amount of recirculated exhaust gas, which is critical for improving engine fuel economy and reducing emissions. To address problems relating to the precise positioning of an electromotive (EM) valve under slowly varying plant dynamics and uncertain disturbances, we propose a servo control system design based on linear active disturbance rejection control (LADRC) for the EGR EM valve driven by a limited angle torque motor (LATM). By analyzing the structure of the LATM and the transmission, the dynamic model of the system is derived. In addition, to solve the problems caused by slowly varying plant dynamics and uncertain disturbances, we combine the effects of uncertain model parameters and external disturbances as the total disturbance, which is estimated in real time by an extended state observer (ESO) and then compensated. In addition, accurate angular information is obtained using a non-contact magnetic angle measurement method, and a high-speed digital communication channel is established to help implement a closed-loop position control system with improved responsiveness and accuracy. Simulation and experimental results show that the proposed servo system design can effectively ensure the precision and real-time performance of the EM valve under slowly changing plant dynamics and uncertain disturbances. The proposed servo system design achieves a full-stroke valve control accuracy of better than 0.05 mm and a full-stroke response time of less than 100 ms. The controlled valve also has good robustness under shock-type external disturbances and excellent airflow control capability. The repeatability of the airflow control is generally within 5%, and the standard deviation is less than 0.2 m3/h.

7.
Mol Med ; 29(1): 42, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013504

RESUMO

BACKGROUND: Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway. METHODS: Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined. RESULTS: We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro. CONCLUSION: Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway.


Assuntos
Injúria Renal Aguda , Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Espécies Reativas de Oxigênio , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/tratamento farmacológico , Ferro , Isquemia , Lipídeos
8.
Cancer Immunol Immunother ; 72(3): 719-731, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36053290

RESUMO

In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. ß-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, ß-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of ß-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of ß-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1ß and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with ß-glucan synergized tumor regression. After treatment with ß-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1ß and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the ß-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.


Assuntos
Interleucina-6 , Melanoma , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais/farmacologia , Interleucina-12/farmacologia , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral
9.
Phys Rev Lett ; 131(24): 246302, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181139

RESUMO

Whenever two irreversible processes occur simultaneously, time-reversal symmetry of microscopic dynamics gives rise, on a macroscopic level, to Onsager's reciprocal relations, which impose constraints on the number of independent components of any transport coefficient tensor. Here, we show that in the antiferromagnetic YbMnBi_{2}, which displays a strong temperature-dependent anisotropy, Onsager's reciprocal relations are strictly satisfied for anomalous electric (σ_{ij}^{A}) and anomalous thermoelectric (α_{ij}^{A}) conductivity tensors. In contradiction with what was recently reported by Pan et al. [Nat. Mater. 21, 203 (2022)NMAACR1476-112210.1038/s41563-021-01149-2], we find that σ_{ij}^{A}(H)=σ_{ji}^{A}(-H) and α_{ij}^{A}(H)=α_{ji}^{A}(-H). This equality holds in the whole temperature window irrespective of the relative weights of the intrinsic or extrinsic mechanisms. The α_{ij}^{A}/σ_{ij}^{A} ratio is close to k_{B}/e at room temperature but peaks to an unprecedented magnitude of 2.9k_{B}/e at ∼150 K, which may involve nondegenerate carriers of small Fermi surface pockets.

10.
Chemistry ; 29(32): e202300373, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36988048

RESUMO

ZnS has acquired increasing attention for high-performance PIBs anode because of its remarkable theoretical capacity, and redox reversibility for conversion reaction. However, the larger volume variation and delayed reaction kinetics for the ZnS in the discharge/charge processes lead to pulverization and severe capacity degradation. Herein, the trumpet-like ZnS@C composite was synthesized by template method by using sodium citrate as carbon source followed by vulcanization process. As potassium ion batteries (PIB) anode, ZnS@C composite exhibits good rate performance and long life (stable reversible capacity of 107.8 mAh/g over 2000 charge-discharge cycles at 5 A/g and high reversible capacity of 310 mAh/g at 0.1 A/g). The outstanding electrochemical performance of the ZnS@C composite is ascribed to its unique structure, which can mitigate the volume expansion of ZnS in the charge discharge process, expand the contact area between the electrode and electrolyte, and improve the conductivity of electrode materials by the introduction of carbon layer. This method of synthesizing trumpet-like ZnS@C composite provides an important strategy for obtaining potassium ion batteries anode with long cycle.


Assuntos
Carbono , Potássio , Condutividade Elétrica , Eletrodos
11.
J Org Chem ; 88(14): 10282-10286, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37431757

RESUMO

The decarboxylative coupling using carboxylic acid and potassium metabisulfite, promoted by a palladium catalyst, is reported for the generation of sulfides. The coupling is performed using the easily available carboxylic acid and environmentally friendly inorganic sulfides as a divalent inorganic sulfur source. Not only aromatic acids but also aliphatic carboxylic acids are workable during the couplings. The method is applicable and practical to a scope of 20 examples and drug molecules.

12.
Nanomedicine ; 47: 102617, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280043

RESUMO

Prostate-specific membrane antigen (PSMA) is a prominent biomarker for prostate cancer (PCa) diagnosis. Safe contrast agents able to render the expression and distribution of PSMA would facilitate early accurate screening and prognostic prediction of PCa. However, current Gd-containing nanoparticles are often limited by nonspecific redistribution in mononuclear phagocyte system (MPS) and inadequate perfusion to target sites. Besides, intrinsic defects of magnetic resonance (MR) equipment also hamper their use for precisely depicting PSMA details. Herein, we devised a novel noninvasive MR/CT/NIRF multimodal contrast agent (AGGP) coordinated to a high-affinity PSMA ligand (PSMA1) to specifically detect and quantify PSMA expression in PCa lesions, which exhibited formidable tripe-modal signal augments, preferential PSMA targeting, effective MPS escaping and profitable renal-clearable behavior in living mice. Biocompatibility and histopathological studies substantiated high security of AGGP in vivo, opening the door to future opportunities for improving early-stage PCa detection and clinical implementation of more effective multifunctional nanotherapeutics.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Camundongos , Animais , Masculino , Humanos , Próstata , Ouro , Espectroscopia de Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada por Raios X
13.
Proc Natl Acad Sci U S A ; 117(48): 30215-30219, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199600

RESUMO

An exciton is an electron-hole pair bound by attractive Coulomb interaction. Short-lived excitons have been detected by a variety of experimental probes in numerous contexts. An excitonic insulator, a collective state of such excitons, has been more elusive. Here, thanks to Nernst measurements in pulsed magnetic fields, we show that in graphite there is a critical temperature (T = 9.2 K) and a critical magnetic field (B = 47 T) for Bose-Einstein condensation of excitons. At this critical field, hole and electron Landau subbands simultaneously cross the Fermi level and allow exciton formation. By quantifying the effective mass and the spatial separation of the excitons in the basal plane, we show that the degeneracy temperature of the excitonic fluid corresponds to this critical temperature. This identification would explain why the field-induced transition observed in graphite is not a universal feature of three-dimensional electron systems pushed beyond the quantum limit.

14.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108751

RESUMO

Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.


Assuntos
Magnoliopsida , Mariposas , Animais , Spodoptera , Polinização , Ecossistema , Pólen/genética , Mariposas/genética , Plantas , Ásia Oriental
15.
Environ Geochem Health ; 46(1): 16, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147141

RESUMO

Soil organic matter can protect plants and microorganisms from toxic substances. Beyond the tolerance limit, the toxicity of petroleum pollution to soil organisms may increase rapidly with the increase of petroleum content. However, the method for evaluating the petroleum tolerance limit of soil organic matter (SOM) is still lacking. In this study, the petroleum saturation limit in SOM was first evaluated by the sorption coefficient (Kd) of 1,2-dichlorobenzene (DCB) from water to soils containing different petroleum levels. The sorption isotherm of dichlorobenzene in several petroleum-contaminated soils with different organic matter content and the microbial toxicity test of several petroleum-contaminated soils were determined. It is found that when the petroleum content is about 5% of the soil organic matter content, the sorption of petroleum to organic matter reached saturation limit. When organic matter reaches petroleum saturation limit, the sorption coefficient of DCB by soil particles increased linearly with the increase of petroleum content (R2 > 0.991). The results provided important insights into the understanding the fate of petroleum pollutants in soil and the analysis of soil toxicity.


Assuntos
Poluentes Ambientais , Petróleo , Poluição Ambiental , Solo
16.
Cancer Immunol Immunother ; 71(5): 1103-1113, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34585256

RESUMO

BACKGROUND: Liver transplantation and liver resection are curative options for early hepatocellular carcinoma (HCC). The outcome is in part depended on the immunological response to the malignancy. In this study, we aimed to identify immunological profiles of non-HCV/non-HBV HCC patients. METHODS: Thirty-nine immune cell subsets were measured with multicolor flow cytometry. This immunophenotyping was performed in peripheral blood (PB) and tumor specimens of 10 HCC resection patients and 10 healthy donors. The signatures of the highly differential leukocyte count (hDIF) were analyzed using multidimensional techniques. Functional capability was measured using intracellular IFN-γ staining (Trial Registration DRKS00013567). RESULTS: The hDIF showed activation (subsets of T-, B-, NK- and dendritic cells) and suppression (subsets of myeloid-derived suppressor cells and T- and B-regulatory cells) of the antitumor response. Principal component analysis of PB and tumor infiltrating leukocytes (TIL) illustrated an antitumor activating gradient. TILs showed functional capability by secreting IFN-γ but did not kill HCC cells. CONCLUSIONS: In conclusion, the measurement of the hDIF shows distinct differences in immune reactions against non-HBV/non-HCV HCC and illustrates an immunosuppressive gradient toward peripheral blood. TRIAL REGISTRATION: DRKS00013567.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Hepatectomia , Humanos , Imunofenotipagem
17.
Clin Exp Immunol ; 208(3): 340-350, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35511600

RESUMO

Ulcerative colitis (UC) is one of the two main forms of inflammatory bowel disease (IBD) and is an idiopathic, chronic inflammatory disease of the colonic mucosa with an unclear etiology. Interleukin (IL)-10 has been reported to play a crucial role in the maintenance of immune homeostasis in the intestinal environment. Type 1 regulatory T (Tr1) cells are a subset of CD4+Foxp3- T cells able to secrete high amounts of IL-10 with potent immunosuppressive properties. In this study, we found that the combination of anti-GITR antibody (G3c) and CD28 superagonist (D665) treatment stimulated the generation of a large amount of Tr1 cells. Furthermore, G3c/D665 treatment not only significantly relieved severe mucosal damage but also reduced the incidence of colonic shortening, weight loss, and hematochezia. Dextran sodium sulfate (DSS) upregulated the mRNA levels of IL-6, IL-1ß, IL-17, IL-12, tumor necrosis factor-alpha, C-C chemokine receptor type 5, and Bax in splenic lymphocytes (SPLs) and colon tissues, while G3c/D665 treatment conversely inhibited the increase in mRNA levels of these genes. In addition, G3c/D665 treatment altered the proportion of CD4+ and CD8+ T cells and increased CD4+CD25+Foxp3+ regulatory T cells in SPLs, mesenteric lymph nodes (MLNs), and lamina propria lymphocytes (LPLs). Thus, the combination of G3c and D665 treatment showed efficacy against DSS-induced UC in mice by inducing a large amount of Tr1 cell generation via the musculoaponeurotic fibrosarcoma pathways in vivo and relieving inflammatory responses both systematically and locally.


Assuntos
Colite Ulcerativa , Colite , Animais , Antígenos CD28/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Sulfatos , Linfócitos T Reguladores
18.
Liver Transpl ; 28(5): 782-793, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34529892

RESUMO

Small-for-size syndrome (SFSS) is a common complication following partial liver transplantation and extended hepatectomy. SFSS is characterized by postoperative liver dysfunction caused by insufficient regenerative capacity and portal hyperperfusion and is more frequent in patients with preexisting liver disease. We explored the effect of the Mesenchymal-epithelial transition factor (MET)-agonistic antibody 71D6 on liver regeneration and functional recovery in a mouse model of SFSS. Male C57/BL6 mice were exposed to repeated carbon tetrachloride injections for 10 weeks and then randomized into 2 arms receiving 3 mg/kg 71D6 or a control immunoglobulin G (IgG). At 2 days after the randomization, the mice were subjected to 70% hepatectomy. Mouse survival was recorded up to 28 days after hepatectomy. Satellite animals were euthanized at different time points to analyze liver regeneration, fibrosis, and inflammation. Serum 71D6 administration significantly decreased mouse mortality consequent to insufficient regeneration of the cirrhotic liver. Analysis of liver specimens in satellite animals revealed that 71D6 promoted powerful activation of the extracellular signal-regulated kinase pathway and accelerated liver regeneration, characterized by increased liver-to-body weight, augmented mitotic index, and higher serum albumin levels. Moreover, 71D6 accelerated the resolution of hepatic fibrosis as measured by picrosirius red, desmin, and α-smooth muscle actin staining, and suppressed liver infiltration by macrophages as measured by CD68 and F4/80 staining. Analysis of gene expression by reverse-transcription polymerase chain reaction confirmed that 71D6 administration suppressed the expression of key profibrotic genes, including platelet-derived growth factor, tissue inhibitor of metalloproteinase 3, and transforming growth factor-ß1, and of key proinflammatory genes, including tumor necrosis factor-α, interleukin-1ß, chemokine (C-C motif) ligand 3, and chemokine (C-C motif) ligand 5. These results suggest that activating the MET pathway via an hepatocyte growth factor-mimetic antibody may be beneficial in patients with SFSS and possibly other types of acute and chronic liver disorders.


Assuntos
Regeneração Hepática , Transplante de Fígado , Animais , Hepatectomia/efeitos adversos , Humanos , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos
19.
Appl Environ Microbiol ; 88(12): e0059722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638840

RESUMO

Bacterial biodiversity is tightly correlated with ecological functions of natural systems, and bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning. However, the biogeographic pattern and elevational differentiation of sedimentary bacterial diversity have rarely been studied in cross-river systems at a continental scale. This study analyzed the biogeographic patterns and elevational differentiations of the entire, abundant, and rare bacterial (sub)communities as well as the underlying mechanisms across nine rivers that span distinct geographic regions and large elevational gradients in China. We found that bacterial rare and abundant subcommunities shared similar biogeographic patterns and both demonstrated strong distance-decay relationships, despite their distinct community compositions. However, both null model and variation partitioning analysis results showed that while environmental selection governed rare subcommunity assemblies (contribution: 51.9%), dispersal limitation (62.7%) controlled the assembly of abundant subcommunities. The disparity was associated with the broader threshold width of abundant taxa to water temperature and pH variations than rare taxa. Elevation-induced bacterial composition variations were more evident than latitude-induced ones. Some specific operational taxonomic units (OTUs), representing 16.4% of the total sequences, much preferentially and even exclusively lived in high-elevation or low-elevation habitats and demonstrated some adaptations to local conditions. Greater positive: negative link ratios in bacterial co-occurrence networks of low elevations than high elevations (P < 0.05) partly resulted from their harboring higher organic carbon: nitrogen ratios. Together, this study draws a biogeographic picture of sedimentary bacterial communities in a continental-scale riverine system and highlights the importance of incorporating elevation-associated patterns of microbial diversity into riverine microbial ecology studies. IMPORTANCE Bacterial diversity is tightly correlated with the nutrient cycling of river systems. However, previous studies on bacterial diversity are mainly constrained to one single river system, although microbial biogeography and its drivers exhibit strong spatial scale dependence. Moreover, elevational differentiations of bacterial communities across river systems have also rarely been studied. Bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning, and they share similar biogeographic patterns in some environments but not in others. Therefore, we explored the biogeography of the entire, abundant, and rare (sub)communities in nine rivers that cover a wide space range and large elevational gradient in China. Our results revealed that bacterial rare and abundant subcommunities shared similar biogeographic patterns but their assembly mechanisms were much different in these rivers. Moreover, bacterial communities showed evident differentiations between high elevations and low elevations. These findings will facilitate a better understanding of bacterial diversity features in river systems.


Assuntos
Ecossistema , Rios , Bactérias/genética , Biodiversidade , China , Rios/microbiologia
20.
Chemistry ; 28(67): e202202432, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028597

RESUMO

Nb2 O5 possesses superior fast Li+ storage capability for LIB anodes, benefiting from its fast pseudocapacitive behavior and low volumetric change within the cycling processes. However, the poor electric conductivity for Nb2 O5 restricts its reaction kinetics and rate property. Herein, Nb2 O5 /carbon (C) submicrostructures are fabricated by solvothermal method followed by calcination process. The Nb2 O5 /C submicrostructures exhibit outstanding rate behavior and cyclic performance (332 (194) mAh g-1 after 1000 cycles at 1 (5) A g-1 ). The superior electrochemical property is attributed to the distinctive structure for Nb2 O5 /C submicrostructures, in which Nb2 O5 nanoparticles uniformly distributed within Nb2 O5 /C composite can protect Nb2 O5 nanoparticles from agglomeration, and the porous carbon matrix can enhance electron/ion conductivity. This work furnishes a novel strategy for fabricating Nb2 O5 /C submicrostructures with superior Li+ storage performance, which can be potentially used to design other metal oxide/C submicrostructures for second battery anode.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa