Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 196(2): 1475-1488, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833579

RESUMO

The asymmetrical distribution of auxin supports high intensity blue light (HBL)-mediated phototropism. Flavonoids, secondary metabolites induced by blue light and TRANSPARENT TESTA GLABRA1 (TTG1), alter auxin transport. However, the role of TTG1 in HBL-induced phototropism in Arabidopsis (Arabidopsis thaliana) remains unclear. We found that TTG1 regulates HBL-mediated phototropism. HBL-induced degradation of CRYPTOCHROME 1 (CRY1) was repressed in ttg1-1, and depletion of CRY1 rescued the phototropic defects of the ttg1-1 mutant. Moreover, overexpression of CRY1 in a cry1 mutant background led to phototropic defects in response to HBL. These results indicated that CRY1 is involved in the regulation of TTG1-mediated phototropism in response to HBL. Further investigation showed that TTG1 physically interacts with CRY1 via its N-terminus and that the added TTG1 promotes the dimerization of CRY1. The interaction between TTG1 and CRY1 may promote HBL-mediated degradation of CRY1. TTG1 also physically interacted with blue light inhibitor of cryptochrome 1 (BIC1) and Light-Response Bric-a-Brack/Tramtrack/Broad 2 (LRB2), and these interactions either inhibited or promoted their interaction with CRY1. Exogenous gibberellins (GA) and auxins, two key plant hormones that crosstalk with CRY1, may confer the recovery of phototropic defects in the ttg1-1 mutant and CRY1-overexpressing plants. Our results revealed that TTG1 participates in the regulation of HBL-induced phototropism by modulating CRY1 levels, which are coordinated with GA or IAA signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos , Luz , Fototropismo , Criptocromos/metabolismo , Criptocromos/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fototropismo/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas , Luz Azul
2.
Plant Cell Rep ; 42(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36224499

RESUMO

KEY MESSAGE: Rice glycosyltransferase gene UGT2 was identified to play a crucial role in salt tolerance. The transcription factor OsbZIP23 was demonstrated to regulate the UGT2 expression under stress conditions. UDP-glycosyltransferases (UGTs) play key roles in modulating plant responses to environmental challenges. In this study, we characterized a novel glycosyltransferase, UGT2, which plays an important role in salt stress responses in rice (Oryza sativa L). We found that seedlings overexpressing UGT2 exhibited better growth than wild type in shoot and root under hydroponic culture with salt stress treatments, while ugt2ko mutant lines suffered much more growth inhibition. When the soil-grown UGT2 transgenic plants were subjected to salt stress, we also found that ugt2ko mutant lines were severely withered and most of them died, while the overexpression lines grew well and had higher survival rate. Compared with wild-type plants, UGT2 overexpression greatly increased the expression levels of the reactive oxygen species scavenging genes and stress-responsive genes. Furthermore, the upstream regulatory mechanism of the UGT2 gene was identified and we found that a bZIP transcription factor, OsbZIP23, can bind to the UGT2 promoter and enhance the UGT2 transcription levels. This work reveals that OsbZIP23-UGT2 module may play a major role in regulating the salt stress tolerance in rice.


Assuntos
Oryza , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tolerância ao Sal/genética , Oryza/metabolismo , Estresse Fisiológico/genética , Estresse Salino/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Stress Biol ; 3(1): 27, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676397

RESUMO

Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism.

4.
Front Plant Sci ; 12: 790195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003178

RESUMO

Drought is one of the most important environmental constraints affecting plant growth and development and ultimately leads to yield loss. Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) are believed to play key roles in coping with environmental stresses. In rice, it is estimated that there are more than 200 UGT genes. However, most of them have not been identified as their physiological significance. In this study, we reported the characterization of a putative glycosyltransferase gene UGT85E1 in rice. UGT85E1 gene is significantly upregulated by drought stress and abscisic acid (ABA) treatment. The overexpression of UGT85E1 led to an enhanced tolerance in transgenic rice plants to drought stress, while the ugt85e1 mutants of rice showed a more sensitive phenotype to drought stress. Further studies indicated that UGT85E1 overexpression induced ABA accumulation, stomatal closure, enhanced reactive oxygen species (ROS) scavenging capacity, increased proline and sugar contents, and upregulated expression of stress-related genes under drought stress conditions. Moreover, when UGT85E1 was ectopically overexpressed in Arabidopsis, the transgenic plants showed increased tolerance to drought as well as in rice. Our findings suggest that UGT85E1 plays an important role in mediating plant response to drought and oxidative stresses. This work may provide a promising candidate gene for cultivating drought-tolerant crops both in dicots and monocots.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa