Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7908): 46-50, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508782

RESUMO

Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks-qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems1-3. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment3-5. Here we report our experimental realization of a qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum6-13. By integrating an electron trap in a circuit quantum electrodynamics architecture14-20, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are implemented to measure the energy relaxation time T1 of 15 µs and phase coherence time T2 over 200 ns. These results indicate that the electron-on-solid-neon qubit already performs near the state of the art for a charge qubit21.

2.
Chem Rev ; 123(1): 1-30, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342422

RESUMO

The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.

3.
J Am Chem Soc ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935866

RESUMO

Electrocatalytic semihydrogenation of alkynols presents a sustainable alternative to conventional thermal methodologies for the high-value production of alkenols. The design of efficient catalysts with superior catalytic and energy efficiency for semihydrogenation poses a significant challenge. Here, we present the application of an electron-divergent Cu3Pd alloy-based heterojunction in promoting the electrocatalytic semihydrogenation of alkynols to alkenols using water as the proton source. The tunable electron divergence of Cuδ- and Pdδ+, modulated by rectifying contact with nitrogen-rich carbons, enables the concerted binding of active H species from the Volmer step of water dissociation and the C≡C bond of alkynols on Pdδ+ sites. Simultaneously, the pronounced electron divergence of Cu3Pd facilitates the universal adsorption of OH species from the Volmer step and alkynols on the Cuδ- sites. The electron-divergent dual-center substantially boosts water dissociation and inhibition of completing hydrogen evolution to give a turnover frequency of 2412 h-1, outperforming the reported electrocatalysts' value of 7.3. Moreover, the continuous production of alkenols at industrial-related current density (-200 mA cm-2) over the efficient and durable Cu3Pd-based electrolyzer could achieve a cathodic energy efficiency of 45 mol kW·h-1, 1.7 times the bench-marked reactors, promising great potential for sustainable industrial synthesis.

4.
Small ; : e2402314, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708815

RESUMO

Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.

5.
Plant Cell Environ ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863246

RESUMO

The shortage of decades-long continuous measurements of ecosystem processes limits our understanding of how changing climate impacts forest ecosystems. We used continuous eddy-covariance and hydrometeorological data over 2002-2022 from a young Douglas-fir stand on Vancouver Island, Canada to assess the long-term trend and interannual variability in evapotranspiration (ET) and transpiration (T). Collectively, annual T displayed a decreasing trend over the 21 years with a rate of 1% yr-1, which is attributed to the stomatal downregulation induced by rising atmospheric CO2 concentration. Similarly, annual ET also showed a decreasing trend since evaporation stayed relatively constant. Variability in detrended annual ET was mostly controlled by the average soil water storage during the growing season (May-October). Though the duration and intensity of the drought did not increase, the drought-induced decreases in T and ET showed an increasing trend. This pattern may reflect the changes in forest structure, related to the decline in the deciduous understory cover during the stand development. These results suggest that the water-saving effect of stomatal regulation and water-related factors mostly determined the trend and variability in ET, respectively. This may also imply an increase in the limitation of water availability on ET in young forests, associated with the structural and compositional changes related to forest growth.

6.
Eur Radiol ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214735

RESUMO

OBJECTIVES: To validate a novel stepwise strategy in which computed tomography-derived fractional flow reserve (FFRCT) is restricted to intermediate stenosis on coronary computed tomography angiography (CCTA) and computed tomography myocardial perfusion imaging (CT-MPI) was reserved for vessels with gray zone FFRCT values. MATERIALS AND METHODS: This retrospective study included 87 consecutive patients (age, 58 ± 10 years; 70% male) who underwent CCTA, dynamic CT-MPI, interventional coronary angiography (ICA), and fractional flow reserve (FFR) for suspected or known coronary artery disease. FFRCT was computed using a deep learning-based platform. Three stepwise strategies (CCTA + FFRCT + CT-MPI, CCTA + FFRCT, CCTA + CT-MPI) were constructed and their diagnostic performance was evaluated using ICA/FFR as the reference standard. The proportions of vessels requiring further ICA/FFR measurement based on different strategies were noted. Furthermore, the net reclassification index (NRI) was calculated to ascertain the superior model. RESULTS: The CCTA + FFRCT + CT-MPI strategy yielded the lowest proportion of vessels requiring additional ICA/FFR measurement when compared to the CCTA + FFRCT and CCTA + CT-MPI strategies (12%, 22%, and 24%). The CCTA + FFRCT + CT-MPI strategy exhibited the highest accuracy for ruling-out (91%, 84%, and 85%) and ruling-in (90%, 85%, and 85%) functionally significant lesions. All strategies exhibited comparable sensitivity for ruling-out functionally significant lesions and specificity for ruling-in functionally significant lesions (p > 0.05). The NRI indicated that the CCTA + FFRCT + CT-MPI strategy outperformed the CCTA + FFRCT strategy (NRI = 0.238, p < 0.001) and the CCTA + CT-MPI strategy (NRI = 0.233%, p < 0.001). CONCLUSIONS: The CCTA + FFRCT + CT-MPI stepwise strategy was superior to the CCTA + FFRCT strategy and CCTA+ CT-MPI strategy by minimizing unnecessary invasive diagnostic catheterization without compromising the agreement rate with ICA/FFR. CLINICAL RELEVANCE STATEMENT: Our novel stepwise strategy facilitates greater confidence and accuracy when clinicians need to decide on interventional coronary angiography referral or deferral, reducing the burden of invasive investigations on patients. KEY POINTS: • A stepwise CCTA + FFRCT + CT-MPI strategy holds promise as a viable method to reduce the need for invasive diagnostic catheterization, while maintaining a high level of agreement with ICA/FFR. • The CCTA + FFRCT + CT-MPI strategy performed better than the CCTA + FFRCT and CCTA + CT-MPI strategies. • A stepwise CCTA + FFRCT + CT-MPI strategy allows to minimize unnecessary invasive diagnostic catheterization and helps clinicians to referral or deferral for ICA/FFR with more confidence.

7.
BMC Vet Res ; 20(1): 188, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730373

RESUMO

Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions. The study was designed as a finite element analysis (FEA) of the femur using a musculoskeletal model of the loading situation in stance. Relevant forces were determined in the musculoskeletal model via optimization. The treatment of four different fracture types with an intramedullary nail was investigated in FEA with loading conditions derived from the model. The analyzed diaphyseal fracture types were a transverse (TR) fracture, two oblique fractures in different orientations (OB-ML: medial-lateral and OB-AP: anterior-posterior) and a "gap" fracture (GAP) without contact between the fragments. For the native femur, the most relevant areas of increased stress were located distally to the femoral head and proximally to the caudal side of the condyles. For all fracture types, the highest stresses in the implant material were present in the fracture-adjacent screws. Maximum compressive (-348 MPa) and tensile stress (197 MPa) were found for the GAP fracture, but material strength was not exceeded. The mathematical model was able to predict a load distribution in the femur of the standing horse and was used to assess the performance of internal fixation devices via FEA. The analyzed intramedullary nail and screws showed sufficient stability for all fracture types.


Assuntos
Fraturas do Fêmur , Fixação Interna de Fraturas , Membro Posterior , Animais , Cavalos/fisiologia , Fenômenos Biomecânicos , Fraturas do Fêmur/veterinária , Fraturas do Fêmur/cirurgia , Fixação Interna de Fraturas/veterinária , Fixação Interna de Fraturas/métodos , Membro Posterior/cirurgia , Análise de Elementos Finitos , Fêmur/cirurgia , Modelos Biológicos , Suporte de Carga , Fixação Intramedular de Fraturas/veterinária , Fixação Intramedular de Fraturas/instrumentação
8.
Chemistry ; 29(17): e202203227, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484618

RESUMO

The development of photothermal agents (PTAs) with robust photostability and high photothermal conversion efficiency is of great importance for cancer photothermal therapy. Herein, a novel PTA was created using two-dimensional intermetallic PtSnBi nanoplates (NPs), which demonstrated excellent photostability and biocompatibility with a high photothermal conversion efficiency of ∼61 % after PEGylation. More importantly, PtSnBi NPs could be employed as photoacoustic imaging contrast agents for tumor visualization due to their strong absorbance in the NIR range. In addition, both in vitro and in vivo experiments confirmed that PtSnBi NPs had a good photothermal efficacy under NIR laser irradiation. Therefore, the remarkable therapeutic characteristics of PtSnBi NPs make them a most promising candidate for cancer theranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
9.
Soft Matter ; 19(2): 258-267, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511950

RESUMO

Non-Newtonian fluid rheological properties are a hot research topic for realizing intelligent applications. In order to investigate the microscopic mechanism and structural evolution process of the nonlinear rheological behavior of non-Newtonian fluids, this paper systematically investigates two continuous nonlinear rheological behaviors of non-Newtonian fluids, namely shear-thickening and shear-thinning rheological properties, using a non-Newtonian fluid system composed of polyethylene glycol (PEG) mixed with nano-silica (Nano-SiO2) by a dissipative particle dynamics (DPD) method. It is shown that at low shear rates, the molecular chains of PEG in the fluid are stretched due to shear flow and the molecular structure is transformed into an ordered state; and the effective hydrodynamic radius of Nano-SiO2 beads decreases, which makes the translational friction coefficient of the beads decrease and the system mobility increases, exhibiting shear-thinning behavior. When the shear rate exceeds the critical value, the contact and collision probability between Nano-SiO2 beads in the non-Newtonian fluid increases; a large number of silicon hydroxyl groups exist on the surface of Nano-SiO2, which form a large number of hydrogen bonds when they are close to each other and constrain the particle separation, resulting in a large aggregation of Nano-SiO2 beads, leading to an increase in the effective kinetic radius of Nano-SiO2 beads and an increase in the coefficient of translational friction, forming a blockage of the fluid system and exhibiting a shear-thickening behavior. Our study provides insights for understanding the rheological behavior of non-Newtonian fluids from a microscopic perspective, and contributes to the intelligent application of non-Newtonian fluids.

10.
Analyst ; 149(1): 82-87, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37997151

RESUMO

A cascade signal-amplified fluorescent biosensor was developed for miRNA-21 detection by combining APE1 enzyme-assisted target recycling and rolling circle amplification strategy. A key feature of this biosensor is its dual-trigger mechanism, utilizing both tumor-endogenous miRNA-21 and the APE1 enzyme in the initial amplification step, followed by a second rolling circle amplification reaction. This dual signal amplification cascade significantly enhanced sensitivity, achieving a detection limit of 3.33 pM. Furthermore, this biosensor exhibited excellent specificity and resistance to interference, allowing it to effectively distinguish and detect the target miRNA-21 in the presence of multiple interfering miRNAs. Moreover, the biosensor maintained its robust detection capabilities in a 10% serum environment, demonstrating its potential for clinical disease diagnosis applications.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , Corantes , Técnicas de Amplificação de Ácido Nucleico , Limite de Detecção
11.
Anal Bioanal Chem ; 415(29-30): 7103-7115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837540

RESUMO

1,5-anhydroglucitol (1,5-AG) is of considerable clinical relevance as a biochemical marker of glucose metabolism in the assessment and monitoring of diabetes. Herein, a simple colorimetric biosensor was constructed for the identification and detection of 1,5-AG by using pyranose oxidase (PROD) enzyme cascaded with reduced graphene oxide/persimmon tannin/Pt@Pd (RGO-PT/Pt@Pd NPs) nanozyme. The as-prepared RGO-PT/Pt@Pd NPs had excellent peroxidase-like activity and can be applied as a nanozyme. First, PROD enzyme reacts with the target 1,5-AG, decomposing 1,5-AG into 1,5-anhydrofuctose (1,5-AF) and H2O2. At this point, the highly catalytic RGO-PT/Pt@Pd NPs nanozyme produces a cascade with PROD enzyme which catalyzes the decomposition of H2O2 to produce O2. This in turn oxidizes the substrate 3,3',5,5'-tetramethylbenzidine (TMB) and produces a color change in the solution. Finally, the detection of 1,5-AG was achieved by measuring the absorption peak at 652 nm with an ultraviolet visible (UV-vis) spectrophotometer. Under optimal conditions, the linear operating range of the 1,5-AG enzyme cascade colorimetric sensor was 1.0-100.0 µg/mL, and the limit of detection (LOD) was 0.81 µg/mL. The proposed colorimetric biosensor was successfully applied to detect 1,5-AG in spiked human serum samples with the recoveries of 97.2-103.9% and RSDs of 1.94-4.48%. It provides a promising developmental assay for clinical detection of 1,5-AG.


Assuntos
Diospyros , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/química , Diospyros/metabolismo , Colorimetria , Taninos , Citocromo P-450 CYP2B1 , Peroxidase/química
12.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903516

RESUMO

Glypican-3 (GPC3), as an emerging biomarker, has been shown to be beneficial for the early diagnosis and treatment of hepatocellular carcinoma (HCC). In this study, an ultrasensitive electrochemical biosensor for GPC3 detection has been constructed based on the hemin-reduced graphene oxide-palladium nanoparticles (H-rGO-Pd NPs) nanozyme-enhanced silver deposition signal amplification strategy. When GPC3 specifically interacted with GPC3 antibody (GPC3Ab) and GPC3 aptamer (GPC3Apt), an "H-rGO-Pd NPs-GPC3Apt/GPC3/GPC3Ab" sandwich complex was formed with peroxidase-like properties which enhanced H2O2 to reduce the silver (Ag) ions in solution to metallic Ag, resulting in the deposition of silver nanoparticles (Ag NPs) on the surface of the biosensor. The amount of deposited Ag, which was derived from the amount of GPC3, was quantified by the differential pulse voltammetry (DPV) method. Under ideal circumstances, the response value was linearly correlated with GPC3 concentration at 10.0-100.0 µg/mL with R2 of 0.9715. When the GPC3 concentration was in the range from 0.01 to 10.0 µg/mL, the response value was logarithmically linear with the GPC3 concentration with R2 of 0.9941. The limit of detection was 3.30 ng/mL at a signal-to-noise ratio of three and the sensitivity was 1.535 µAµM-1cm-2. Furthermore, the electrochemical biosensor detected the GPC3 level in actual serum samples with good recoveries (103.78-106.52%) and satisfactory relative standard deviations (RSDs) (1.89-8.81%), which confirmed the applicability of the sensor in practical applications. This study provides a new analytical method for measuring the level of GPC3 in the early diagnosis of HCC.


Assuntos
Técnicas Biossensoriais , Glipicanas , Grafite , Nanopartículas Metálicas , Humanos , Técnicas Biossensoriais/métodos , Carcinoma Hepatocelular , Técnicas Eletroquímicas/métodos , Grafite/química , Hemina/química , Peróxido de Hidrogênio , Neoplasias Hepáticas , Nanopartículas Metálicas/química , Paládio , Prata/química
13.
J Am Chem Soc ; 144(12): 5418-5423, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35230846

RESUMO

Merging existing catalysts together as a cascade catalyst may achieve "one-pot" synthesis of complex but functional molecules by simplifying multistep reactions, which is the blueprint of sustainable chemistry with low pollutant emission and consumption of energy and materials only when the smooth mass exchange between different catalysts is ensured. Effective strategies to facilitate the mass exchange between different active centers, which may dominate the final activity of various cascade catalysts, have not been reached until now, even though charged interfaces due to work function driven electron exchange have been widely observed. Here, we successfully constructed mass (reactants and intermediates) exchange paths between Pd/N-doped carbon and MoC/N-doped carbon induced by interfacial electron exchange to trigger the mild and cascade methylation of amines using CO2 and H2. Theoretical and experimental results have demonstrated that the mass exchange between electron-rich MoC and electron-deficient Pd could prominently improve the production of N,N-dimethyl tertiary amine, which results in a remarkably high turnover frequency value under mild conditions, outperforming the state-of-the-art catalysts in the literature by a factor of 5.9.


Assuntos
Dióxido de Carbono , Elétrons , Aminas/química , Carbono/química , Dióxido de Carbono/química , Catálise
14.
Small ; 18(19): e2200885, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35396794

RESUMO

Solar-driven production of hydrogen peroxide (H2 O2 ), as an important industrial chemical oxidant with an extensive range of applications, from oxygen reduction is a sustainable alternative to mainstream anthraquinone oxidation and direct hydrogenation of dioxygen methods. The efficiency of solar to hydrogen peroxide over semiconductor-based photocatalysts is still largely limited by the narrow light absorption to visible light. Here, the authors proposed and demonstrate the proof-of-concept application of light-generated hot electrons in a graphene/semiconductor (exemplified with widely used TiO2 ) dyad to largely extend visible light spectra up to 800 nm for efficient H2 O2 production. The well-designed graphene/semiconductor heterojunction has a rectifying interface with a zero barrier for the hot electron injection, largely boosting excited hot electrons with an average lifetime of ≈0.5 ps into charge carriers with a long fluorescent lifetime (4.0 ns) for subsequent H2 O2 production. The optimized dyadic photocatalyst can provide an H2 O2 yield of 0.67 mm g-1  h-1 under visible light irradiation (λ ≥ 400 nm), which is 20 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst, and even achieves an H2 O2 yield of 0.14 mm g-1  h-1 upon photoexcitation by near-infrared-region light (≈800 nm).

15.
Chemistry ; 28(14): e202103918, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34936146

RESUMO

Surface electric field of catalyst is widely recognized as one of the key points to boost catalytic activity. However, there is still a lack of convenient ways to tune the surface electric field to selectively boost the catalytic conversions of different types of reactants in specific catalytic reactions. Here, we introduce a conceptually new method to tune the surface electric field of electrode materials by adjusting the number and density of heterojunctions inside. Both theoretical and experimental results prove that the well-designed surface electric field of an electrocatalyst plays a key role in facilitating pre-adsorption and/or activation of reactants for selective conversion of trash ions to useful products in hydrogen and oxygen evolution reactions as well as NOx - reduction reactions.

16.
Mikrochim Acta ; 189(10): 392, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138244

RESUMO

A Golgi protein 73 (GP73) colorimetric biosensor based on the reduced graphene oxide-carboxymethyl chitosan-hemin/platinum@palladium nanoparticles (RGO-CMCS-Hemin/Pt@Pd NPs) with peroxidase-like activity was constructed. The RGO-CMCS-Hemin/Pt@Pd NPs with high peroxidase-like activity were successfully synthesized under mild conditions. Then, the aminylated GP73 aptamer (Apt) was bound to the RGO-CMCS-Hemin/Pt@Pd NPs to form the recognition probe. Another unmodified GP73 aptamer (AptI) was served as the capture probe. In the presence of target GP73, the capture probe and the recognition probe specifically bind to GP73 and form a RGO-CMCS-Hemin/Pt@Pd NP-Apt/GP73/AptI sandwich-type structure, which can oxidase the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB in the presence of H2O2. GP73 detection was achieved by measuring the peak UV absorption at 652 nm. Under the optimum conditions, the GP73 concentration was linearly related to the absorbance intensity in the range 10.0-110.0 ng/mL, and the limit of detection (LOD) was 4.7 ng/mL. The proposed colorimetric biosensor was successfully applied to detect GP73 in spiked human serum samples with recoveries of 98.2-107.0% and RSDs of 1.90-5.44%, demonstrating the excellent potential for highly sensitive GP73 detection in clinical detection. A colorimetric biosensor for visual determination of GP73 based on RGO-CMCS-Hemin/Pt@Pd NPs nanozyme with peroxidase-like activity was designed. The GP73 biosensor responses linearly from 10.0-110.0 ng/mL with LOD of 4.7 ng/mL, and shows acceptable specificity and good recovery.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas Metálicas , Quitosana/química , Colorimetria , Dimaprit/análogos & derivados , Grafite , Hemina , Humanos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Paládio/química , Peroxidase/química , Peroxidases , Platina/química
17.
Angew Chem Int Ed Engl ; 61(35): e202207108, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35789523

RESUMO

Production of more than 20 million tons of epoxides per year from olefins suffers from low atom economy due to the use of oxidants and complex catalysts with unsatisfactory selectivity, leading to huge environmental and economic costs. We present a proof-of-concept application of electron-rich RuO2 nanocrystals to boost the highly selective epoxidation of cyclooctene via direct oxygen transfer from water as the sole oxygen source under mild conditions. The enhanced electron enrichment of RuO2 nanocrystals via the Schottky effect with nitrogen-doped carbons largely promotes the capture and activation of cyclooctene to give a high turnover frequency (260 h-1 ) of cyclooctene oxide, far surpassing the reported values (<20 h-1 ) of benchmarked catalysts at room temperature with oxidants. Our electron-rich RuO2 electrocatalysts enable efficient and durable hydrogen production (Faradaic efficiency >90 %) on the cathode without impacting on the selectivity to epoxide (>99 %) on the anode.

18.
Angew Chem Int Ed Engl ; 61(39): e202207467, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35765853

RESUMO

Three-membered rings (3-rings) are an important structural motif in zeolite chemistry, but their formation remains serendipitous in reticular chemistry when designing zeolitic imidazolate frameworks (ZIFs). Herein, we report a design principle for constructing four new ZIFs, termed ZIF-1001 to -1004, from tetrahedral ZnII centers (T), benzotriazolate (bTZ), and different functionalized benzimidazolates (RbIM) that adopt a new zeolite NPO-type topology built from 3-rings. Two factors were critical for this discovery: i) incorporating the bTZ linker within the structures formed 3-rings due to a ∠(T-bTZ-T) angle of 120-130° reminiscent of the ∠(Ge-O-Ge) angle (130°) observed in germanate zeolite-type structures having 3-rings; and ii) RbIM guided the coordination chemistry of bTZ to bind preferentially in an imidazolate-type mode. This series' ability to selectively capture CO2 from high-humidity flue gas and trap ethane from tail gas during shale gas extraction was demonstrated.

19.
J Chem Inf Model ; 61(4): 1560-1569, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33715361

RESUMO

Simplified molecular input line entry system (SMILES)-based deep learning models are slowly emerging as an important research topic in cheminformatics. In this study, we introduce SMILES pair encoding (SPE), a data-driven tokenization algorithm. SPE first learns a vocabulary of high-frequency SMILES substrings from a large chemical dataset (e.g., ChEMBL) and then tokenizes SMILES based on the learned vocabulary for the actual training of deep learning models. SPE augments the widely used atom-level tokenization by adding human-readable and chemically explainable SMILES substrings as tokens. Case studies show that SPE can achieve superior performances on both molecular generation and quantitative structure-activity relationship (QSAR) prediction tasks. In particular, the SPE-based generative models outperformed the atom-level tokenization model in the aspects of novelty, diversity, and ability to resemble the training set distribution. The performance of SPE-based QSAR prediction models were evaluated using 24 benchmark datasets where SPE consistently either did match or outperform atom-level and k-mer tokenization. Therefore, SPE could be a promising tokenization method for SMILES-based deep learning models. An open-source Python package SmilesPE was developed to implement this algorithm and is now freely available at https://github.com/XinhaoLi74/SmilesPE.


Assuntos
Aprendizado Profundo , Algoritmos , Quimioinformática , Humanos , Relação Quantitativa Estrutura-Atividade
20.
Pestic Biochem Physiol ; 173: 104774, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771253

RESUMO

Well-known 4-hydroxycoumarin derivatives, such as warfarin, act as inhibitors of the vitamin K epoxide reductase (VKOR) and are used as anticoagulants. Mutations of the VKOR enzyme can lead to resistance to those compounds. This has been a problem in using them as medicine or rodenticide. Most of these mutations lie in the vicinity of potential warfarin-binding sites within the ER-luminal loop structure (Lys30, Phe55) and the transmembrane helix (Tyr138). However, a VKOR mutation found in Tokyo in warfarin-resistant rats does not follow that pattern (Leu76Pro), and its effect on VKOR function and structure remains unclear. We conducted both in vitro kinetic analyses and in silico docking studies to characterize the VKOR mutant. On the one hand, resistant rats (R-rats) showed a 37.5-fold increased IC50 value to warfarin when compared to susceptible rats (S-rats); on the other hand, R-rats showed a 16.5-fold lower basal VKOR activity (Vmax/Km). Docking calculations exhibited that the mutated VKOR of R-rats has a decreased affinity for warfarin. Molecular dynamics simulations further revealed that VKOR-associated warfarin was more exposed to solvents in R-rats and key interactions between Lys30, Phe55, and warfarin were less favored. This study concludes that a single mutation of VKOR at position 76 leads to a significant resistance to warfarin by modifying the types and numbers of intermolecular interactions between the two.


Assuntos
Rodenticidas , Varfarina , Animais , Resistência a Medicamentos/genética , Mutação , Ratos , Rodenticidas/toxicidade , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa