RESUMO
Animals such as raccoon dogs, mink and muskrats are farmed for fur and are sometimes used as food or medicinal products1,2, yet they are also potential reservoirs of emerging pathogens3. Here we performed single-sample metatranscriptomic sequencing of internal tissues from 461 individual fur animals that were found dead due to disease. We characterized 125 virus species, including 36 that were novel and 39 at potentially high risk of cross-species transmission, including zoonotic spillover. Notably, we identified seven species of coronaviruses, expanding their known host range, and documented the cross-species transmission of a novel canine respiratory coronavirus to raccoon dogs and of bat HKU5-like coronaviruses to mink, present at a high abundance in lung tissues. Three subtypes of influenza A virus-H1N2, H5N6 and H6N2-were detected in the lungs of guinea pig, mink and muskrat, respectively. Multiple known zoonotic viruses, such as Japanese encephalitis virus and mammalian orthoreovirus4,5, were detected in guinea pigs. Raccoon dogs and mink carried the highest number of potentially high-risk viruses, while viruses from the Coronaviridae, Paramyxoviridae and Sedoreoviridae families commonly infected multiple hosts. These data also reveal potential virus transmission between farmed animals and wild animals, and from humans to farmed animals, indicating that fur farming represents an important transmission hub for viral zoonoses.
Assuntos
Pelo Animal , Animais Domésticos , Animais Selvagens , Reservatórios de Doenças , Especificidade de Hospedeiro , Zoonoses Virais , Animais , Cães , Cobaias , Humanos , Animais Domésticos/virologia , Animais Selvagens/virologia , Arvicolinae/virologia , Quirópteros/virologia , Coronavirus/isolamento & purificação , Coronavirus/genética , Coronavirus/classificação , Reservatórios de Doenças/virologia , Reservatórios de Doenças/veterinária , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Pulmão/virologia , Vison/virologia , Orthoreovirus/genética , Orthoreovirus/isolamento & purificação , Filogenia , Cães Guaxinins/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.
Assuntos
Hidrogéis , Seda , Animais , Coelhos , Seda/química , Hidrogéis/química , Ponto Isoelétrico , Materiais Biocompatíveis/químicaRESUMO
BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.
Assuntos
Hipertensão Pulmonar , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Humanos , Masculino , Camundongos , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , PPAR gama/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais , Ubiquitinação , Remodelação VascularRESUMO
Whole-genome duplication (WGD), or polyploidization, is a major contributor to biodiversity. However, the establishment and survival of WGDs are often considered to be stochastic, since elucidating the processes of WGD establishment remains challenging. In the current study, we explored the processes leading to polyploidy establishment in snow carp (Cyprinidae: Schizothoracinae), a predominant component of the ichthyofauna of the Tibetan Plateau and its surrounding areas. Using large-scale genomic data from isoform sequencing, we analyzed ohnolog genealogies and divergence in hundreds to thousands of gene families across major snow carp lineages. Our findings demonstrated that independent autopolyploidization subsequent to speciation was prevalent, while autopolyploidization followed by speciation also occurred in the diversification of snow carp. This was further supported by matrilineal divergence and drainage evolution evidence. Contrary to the long-standing hypothesis that ancient polyploidization preceded the diversification of snow carp, we determined that polyploidy in extant snow carp was established by recurrent autopolyploidization events during the Pleistocene. These findings indicate that the diversification of extant snow carp resembles a coordinated duet: first, the uplift of the Tibetan Plateau orchestrated the biogeography and diversification of their diploid progenitors; then, the extensive Pliocene-Pleistocene climate changes acted as relay runners, further fueling diversification through recurrent autopolyploidization. Overall, this study not only reveals a hitherto unrecognized recent WGD lineage in vertebrates but also advances current understanding of WGD processes, emphasizing that WGD establishment is a non-stochastic event, emerging from numerous adaptations to environmental challenges and recurring throughout evolutionary history rather than merely in plants.
RESUMO
CD30 is a member of the tumor necrosis factor receptor (TNFR) superfamily and expressed in both normal and malignant lymphoid cells. However, the role of CD30 in lymphopoiesis is not known. In this study, we showed CD30 was expressed both in T and B cells, but its deficiency in mice had no effect on T- and B-cell development. In fact, CD30 deficiency attenuated B-cell response to T-cell-dependent antigens. The impaired B cell response in CD30-deficient mice is caused by the reduction of activation-induced cytidine deaminase (AID) expression. Moreover, CD30-deficient mice exhibited decreased TCR-mediated T cell proliferation and slightly impaired TCR signaling. High-throughput RNA sequencing analysis revealed that CD30 deficiency led to a decrease of FOXO-autophagy axis in T cells upon TCR stimulation. Thus, CD30 positively regulates T-cell-dependent immune response and T cell proliferation.
Assuntos
Antígeno Ki-1 , Ativação Linfocitária , Linfócitos T , Animais , Camundongos , Proliferação de Células , Antígeno Ki-1/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologiaRESUMO
Symbiotic nitrogen fixation (SNF) provides sufficient nitrogen (N) to meet most legume nutrition demands. In return, host plants feed symbionts carbohydrates produced in shoots. However, the molecular dialogue between shoots and symbionts remains largely mysterious. Here, we report the map-based cloning and characterization of a natural variation in GmNN1, the ortholog of Arabidopsis thaliana FLOWERING LOCUS T (FT2a) that simultaneously triggers nodulation in soybean and modulates leaf N nutrition. A 43-bp insertion in the promoter region of GmNN1/FT2a significantly decreased its transcription level and yielded N deficiency phenotypes. Manipulating GmNN1/GmFT2a significantly enhanced soybean nodulation, plant growth, and N nutrition. The near-isogenic lines (NILs) carrying low mRNA abundance alleles of GmNN1/FT2a, along with stable transgenic soybeans with CRISPR/Cas9 knockouts of GmNN1/FT2a, had yellower leaves, lower N concentrations, and fewer nodules than wild-type control plants. Grafting together with split-root experiments demonstrated that only shoot GmNN1/FT2a was responsible for regulating nodulation and thereby N nutrition through shoot-to-root translocation, and this process depends on rhizobial infection. After translocating into roots, shoot-derived GmNN1/FT2a was found to interact with GmNFYA-C (nuclear factor-Y subunit A-C) to activate symbiotic signaling through the previously reported GmNFYA-C-ENOD40 module. In short, the description of the critical soybean nodulation regulatory pathway outlined herein sheds novel insights into the shoot-to-root signaling required for communications between host plants and root nodulating symbionts.
Assuntos
Arabidopsis , Glycine max , Arabidopsis/genética , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Simbiose/genéticaRESUMO
Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.
Assuntos
Ciclinas/metabolismo , Glycine max/metabolismo , Glycine max/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Homologia de Sequência de Aminoácidos , Divisão Celular , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Transdução de SinaisRESUMO
BACKGROUND: The common carp (Cyprinus carpio) might best represent the domesticated allopolyploid animals. Although subgenome divergence which is well-known to be a key to allopolyploid domestication has been comprehensively characterized in common carps, the link between genetic architecture underlying agronomic traits and subgenome divergence is unknown in the selective breeding of common carps globally. RESULTS: We utilized a comprehensive SNP dataset in 13 representative common carp strains worldwide to detect genome-wide genetic variations associated with scale reduction, vibrant skin color, and high growth rate in common carp domestication. We identified numerous novel candidate genes underlie the three agronomically most desirable traits in domesticated common carps, providing potential molecular targets for future genetic improvement in the selective breeding of common carps. We found that independently selective breeding of the same agronomic trait (e.g., fast growing) in common carp domestication could result from completely different genetic variations, indicating the potential advantage of allopolyploid in domestication. We observed that candidate genes associated with scale reduction, vibrant skin color, and/or high growth rate are repeatedly enriched in the immune system, suggesting that domestication of common carps was often accompanied by the disease resistance improvement. CONCLUSIONS: In common carp domestication, asymmetric subgenome selection is prevalent, while parallel subgenome selection occurs in selective breeding of common carps. This observation is not due to asymmetric gene retention/loss between subgenomes but might be better explained by reduced pleiotropy through transposable element-mediated expression divergence between ohnologs. Our results demonstrate that domestication benefits from polyploidy not only in plants but also in animals.
Assuntos
Carpas , Domesticação , Animais , Carpas/genética , Genoma , Animais Domésticos/genética , FenótipoRESUMO
We present a first-principles many-body perturbation theory study of nitrophenyl-doped (6,5) single-walled nanotubes (SWCNTs) to understand how sp3 doping impacts the excitonic properties. sp3-doped SWCNTs are promising as a class of optoelectronic materials with bright tunable photoluminescence, long spin coherence, and single-photon emission (SPE), motivating the study of spin excitations. We predict that the dopant results in a single unpaired spin localized around the defect site, which induces multiple low-energy excitonic peaks. By comparing optical absorption and photoluminescence from experiment and theory, we identify the transitions responsible for the red-shifted, defect-induced E11* peak, which has demonstrated SPE for some dopants; the presence of this state is due to both the symmetry-breaking associated with the defect and the presence of the defect-induced in-gap state. Furthermore, we find an asymmetry between the contribution of the two spin channels, suggesting that this system has potential for spin-selective optical transitions.
RESUMO
Enhancers are critical cis-regulatory elements controlling gene expression during cell development and differentiation. However, genome-wide enhancer characterization has been challenging due to the lack of a well-defined relationship between enhancers and genes. Function-based methods are the gold standard for determining the biological function of cis-regulatory elements; however, these methods have not been widely applied to plants. Here, we applied a massively parallel reporter assay on Arabidopsis to measure enhancer activities across the genome. We identified 4327 enhancers with various combinations of epigenetic modifications distinctively different from animal enhancers. Furthermore, we showed that enhancers differ from promoters in their preference for transcription factors. Although some enhancers are not conserved and overlap with transposable elements forming clusters, enhancers are generally conserved across thousand Arabidopsis accessions, suggesting they are selected under evolution pressure and could play critical roles in the regulation of important genes. Moreover, comparison analysis reveals that enhancers identified by different strategies do not overlap, suggesting these methods are complementary in nature. In sum, we systematically investigated the features of enhancers identified by functional assay in A. thaliana, which lays the foundation for further investigation into enhancers' functional mechanisms in plants.
Assuntos
Arabidopsis , Animais , Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Epigênese GenéticaRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a five-year survival rate of approximately 10%. Genetic mutations are pivotal drivers in PDAC pathogenesis, but recent investigations also revealed the involvement of non-genetic alterations in the disease development. In this study, we undertook a multi-omics approach, encompassing ATAC-seq, RNA-seq, ChIP-seq, and Hi-C methodologies, to dissect gene expression alterations arising from changes in chromosome accessibility and chromatin three-dimensional interactions in PDAC. RESULTS: Our findings indicate that chromosomal structural alterations can lead to abnormal expressions on key genes during PDAC development. Notably, overexpression of oncogenes FGFR2, FOXA2, CYP2R1, and CPOX can be attributed to the augmentation of promoter accessibility, coupled with long-range interactions with distal elements. Additionally, our findings indicate that chromosomal structural alterations caused by genomic instability can lead to abnormal expressions in PDACs. As an example, by analyzing chromosomal changes, we identified a putative oncogenic gene, LPAR1, which shows upregulated expression in both PDAC cell lines and clinical samples. The overexpression is correlated with alterations in LPAR1-associated 3D genome structure and chromatin state. We further demonstrated that high LPAR1 activity is required for enhanced PDAC cell migration in vitro. CONCLUSIONS: Collectively, our findings reveal that the chromosomal conformational alterations, in addition to the well-known genetic mutations, are critical for PDAC tumorigenesis.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinogênese/genética , Expressão Gênica , Cromatina/genética , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS: The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS: Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.
Assuntos
Microbioma Gastrointestinal , Temperatura Alta , Animais , Camundongos , Temperatura , Microbioma Gastrointestinal/fisiologia , Temperatura Baixa , Adaptação Fisiológica/fisiologiaRESUMO
Nodulation begins with the initiation of infection threads (ITs) in root hairs. Though mutual recognition and early symbiotic signaling cascades in legumes are well understood, molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis remain largely unexplored. We functionally investigated a novel pectate lyase enzyme, GmNPLa, and its transcriptional regulator GmPTF1a/b in soybean (Glycine max), where their regulatory roles in IT development and nodule formation were elucidated through investigation of gene expression patterns, bioinformatics analysis, biochemical verification of genetic interactions, and observation of phenotypic impacts in transgenic soybean plants. GmNPLa was specifically induced by rhizobium inoculation in root hairs. Manipulation of GmNPLa produced remarkable effects on IT and nodule formation. GmPTF1a/b displayed similar expression patterns as GmNPLa, and manipulation of GmPTF1a/b also severely influenced nodulation traits. LI soybeans with low nodulation phenotypes were nearly restored to HI nodulation level by complementation of GmNPLa and/or GmPTF1a. Further genetic and biochemical analysis demonstrated that GmPTF1a can bind to the E-box motif to activate transcription of GmNPLa, and thereby facilitate nodulation. Taken together, our findings potentially reveal novel mediation of cell wall gene expression involving the basic helix-loop-helix transcription factor GmPTF1a/b acts as a key early regulator of nodulation in soybean.
Assuntos
Glycine max , Rhizobium , Glycine max/genética , Nodulação/fisiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Fenótipo , Regulação da Expressão Gênica de Plantas , SimbioseRESUMO
Seroepidemiological characteristics of human papillomavirus (HPV) in community residents reflect natural infection and can guide the reform of vaccination programs. A population-based serological survey was conducted in Guangdong Province. Serum anti-HPV IgG antibody levels were determined by an ELISA. Neutralizing antibodies against HPV6, 11, 16, and 18 were detected via a pseudovirus-based neutralization assay (PBNA). A total of 5122 serum samples were collected from community residents, including 1989 males and 3133 females, in three cities of Guangdong Province. The rate of HPV IgG antibody positivity in females was 5.39% (95% CI: 4.6-6.2), which was greater than that in males (2.36%; 95% CI: 1.7-3.1). HPV IgG antibodies were more frequently detected in females aged 51-60 years (11.30%; 95% CI: 7.6-16.0), whereas in males, the detection increased with age and reached 4.94% (95% CI: 2.8-6.9) in the group aged ≥71 years. The seropositivity of neutralizing antibodies against HPV6 and 11 was greater than that against HPV16 and 18. The serum neutralizing antibody titers in individuals who received three doses of a vaccine were 7- to 12-fold greater than those in individuals who did not receive the vaccine. The neutralizing antibody titers slightly decreased within 40 months and ranged from 0.038 to 0.057 log ED50 per month. A moderate consistency between the HPV ELISA and PBNA results was observed (Kappa score = 0.49, r = 0.249, 0.635, 0.382, and 0.466 for HPV6, 11, 16, and 18, respectively). The HPV seropositivity rate among healthy residents of Guangdong Province was found to be low among children and adolescents and to increase with age. The serum neutralizing antibody titers were significantly greater in the vaccine group than that in the control group, and this difference persisted over time, which indicated promising protection against HPV infection.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Infecções por Papillomavirus , Humanos , China/epidemiologia , Estudos Soroepidemiológicos , Masculino , Feminino , Anticorpos Antivirais/sangue , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/virologia , Adulto , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Adulto Jovem , Idoso , Adolescente , Criança , Imunoglobulina G/sangue , Pré-Escolar , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Papillomaviridae/imunologia , Papillomaviridae/genética , Papillomaviridae/classificação , Testes de Neutralização , Vacinação/estatística & dados numéricos , Idoso de 80 Anos ou mais , Lactente , Papillomavirus HumanoRESUMO
In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.
Assuntos
Micorrizas , Simbiose , Glycine max , Micorrizas/metabolismo , Fungos , Plantas Geneticamente Modificadas/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Raízes de Plantas/metabolismoRESUMO
Metalenses, boasting outstanding focusing efficiency and high-resolution imaging capabilities, have generated widespread usage in fields such as integrated optics, achromatic imaging, and optical holography. In this study, we have developed a broadband achromatic metalens within the detection range from 3 to 5 µm, and it has a numerical aperture (NA) of 0.71 with a remarkable maximum focusing efficiency of 63.8% at the focal plane within the specified bandwidth. We have further delved into the dispersion control mechanism that combines the geometric and transmission phases and optimized the constructed phase response simulation database using the particle swarm optimization (PSO) algorithm, ensuring a precise phase matching between the actual wavefront and the ideal focusing wavefront. This metalens with its ability to expand the array size has the potential to create a compact infrared imager, which holds significant importance in achieving efficient detection and integration within infrared detectors.
RESUMO
BACKGROUND: Significant concomitants of the sick role maladaptation in colorectal cancer (CRC) patients include inappropriate cognitions, emotional states, and overt conducts associated to disease. This protocol was developed to implement and evaluate the effects of a self-led, virtual reality-based cognitive behavioral therapy (VR-CBT) on the sick role adaptation among working-age CRC patients. METHODS: This is an assessor-blinded, randomized controlled trail that adheres to the SPIRIT 2013 Statement guidelines. A total of 60 working-age CRC patients will be recruited from the colorectal wards of a cancer center and randomly assigned to the VR-CBT group or attention control (AC) group. The VR-CBT group will receive a 7-sessions VR-CBT targeted to sick role adaptation, while the AC group will receive weekly attention at the same time the VR-CBT group receives the intervention. The sick role adaptation, anxiety and depression, illness perceptions, and quality of life will be measured at baseline, 1, 2 and 3-month after completion of the intervention. Side-effects related to VR in the VR-CBT group will be measured at the end of each session. The participants will receive invitations to participate in semi-structured interviews to explore their experiences with the intervention. DISCUSSION: The positive outcomes and user experience of VR-CBT will advance researches on the effectiveness of psychosocial interventions that aims to promote adaptation to the unexpected sick role on cancer populations. This protocol can be tested as an accessible and feasible alternative to traditional high-cost treatment in a randomized controlled study to improve the outcomes of younger cancer survivors. TRIAL REGISTRATION: The protocol was registered on 21 June, 2023 in Chinese Clinical Trial Registry (No.: ChiCTR2300072699) at https://www.chictr.org.cn/ .
Assuntos
Adaptação Psicológica , Terapia Cognitivo-Comportamental , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/psicologia , Neoplasias Colorretais/terapia , Terapia Cognitivo-Comportamental/métodos , Qualidade de Vida , Feminino , Realidade Virtual , Ansiedade/terapia , Ansiedade/psicologia , Masculino , Adulto , Depressão/terapia , Depressão/psicologia , Pessoa de Meia-IdadeRESUMO
Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1ß and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Demência Vascular , Flavonoides , Ratos Sprague-Dawley , Receptor trkB , Transdução de Sinais , Animais , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Flavonoides/uso terapêutico , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cognição/efeitos dos fármacos , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Ratos , Polietilenoglicóis/química , Quitosana/química , Administração Intranasal , Sistemas de Liberação de Fármacos por Nanopartículas , PoliésteresRESUMO
Two extremely halophilic archaeal strains, GSLN9T and XZYJT29T, were isolated from the saline soil in different regions of western China. Both strains GSLN9T and XZYJT29T have two 16S rRNA genes with similarities of 95.1 and 94.8â%, respectively. Strain GSLN9T was mostly related to the genus Halomicrococcus based on 16S rRNA (showing 91.0-96.0 % identities) and rpoB' genes (showing 92.0â% identity). Strain XZYJT29T showed 92.1-97.6â% (16S rRNA gene) and 91.4-93.1â% (rpoB' gene) sequence similarities to its relatives in the genus Halosimplex, respectively. The polar lipid profile of strain GSLN9T included phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate (PGS), sulphated mannosyl glucosyl diether (S-DGD-1) and sulphated galactosyl mannosyl glucosyl diether (S-TGD-1), mostly similar to that of Halomicrococcus hydrotolerans H22T. PA, PG, PGP-Me, S-DGD-1 (S-DGD-PA), S2-DGD, S-TGD-1 and an unidentified glycolipid were detected in strain XZYJT29T; this polar lipid composition is similar to those of members of the genus Halosimplex. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between these two strains and their relatives of the genera Halomicrococcus and Halosimplex were no more than 82, 27 and 80â%, respectively, much lower than the thresholds for species demarcation. Other phenotypic characterization results indicated that strains GSLN9T and XZYJT29T can be differentiated from the current species of the genera Halomicrococcus and Halosimplex, respectively. These results revealed that strains GSLN9T (=CGMCC 1.15215T=JCM 30842T) and XZYJT29T (=CGMCC 1.15828T=JCM 31853T) represent novel species of Halomicrococcus and Halosimplex, for which the names Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov. are proposed.
Assuntos
Halobacteriaceae , Halobacteriales , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Halobacteriaceae/genética , Fosfatidilgliceróis , Solo , SulfatosRESUMO
Two novel halophilic archaeal strains (XZGYJ-43T and ZJ1T) were isolated from Mangkang ancient solar saltern (Tibet, PR China) and Zhujiang river inlet (Guangdong, PR China), respectively. The comparison of the 16S rRNA gene sequences revealed that strain XZGYJ-43T is related to the current species of the family Halobacteriaceae (89.2-91.7% similarity) and strain ZJ1T showed 94.7-98.3% similarity to the current species of the genus Haladaptatus. Phylogenetic analyses based on 16S rRNA genes, rpoB' genes and genomes indicated that strain XZGYJ-43T is separate from the related genera, Halocalculus, Salarchaeum and Halarchaeum of the family Halobacteriaceae, and strain ZJ1T tightly clusters with the current species of the genus Haladaptatus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain XZGYJ-43T and the current species of the family Halobacteriaceae were 71-75, 20-25 and 59-68â%, and these values between strain ZJ1T and the current species of the genus Haladaptatus were 77-81, 27-32 and 76-82â%, respectively, clearly below the thresholds for prokaryotic species demarcation. These two strains could be distinguished from their relatives according to differential phenotypic characteristics. The major polar lipids of strain XZGYJ-43T were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), mannosyl glucosyl diether (DGD-1; DGD-PA) and sulphated mannosyl glucosyl diether (S-DGD-1; S-DGD-PA), and those of strain ZJ1T were PA, PG, PGP-Me, DGD-PA, S-DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. Based on phenotypic, phylogenetic and genomic data, strain XZGYJ-43T (=CGMCC 1.13890T=JCM 33735T) represents a novel species of a new genus within the family Halobacteriaceae, and strain ZJ1T (=CGMCC 1.18785T=JCM 34917T) represents a novel species of the genus Haladaptatus, for which the names Halospeciosus flavus gen. nov., sp. nov. and Haladaptatus caseinilyticus sp. nov. are proposed, respectively.