Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7809-7818, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874576

RESUMO

Noncontact sensing technology serves as a pivotal medium for seamless data acquisition and intelligent perception in the era of the Internet of Things (IoT), bringing innovative interactive experiences to wearable human-machine interaction perception networks. However, the pervasive limitations of current noncontact sensing devices posed by harsh environmental conditions hinder the precision and stability of signals. In this study, the triboelectric nanopaper prepared by a phase-directed assembly strategy is presented, which possesses low charge transfer mobility (1618 cm2 V-1 s-1) and exceptional high-temperature stability. Wearable self-powered noncontact sensors constructed from triboelectric nanopaper operate stably under high temperatures (200 °C). Furthermore, a temperature warning system for workers in hazardous environments is demonstrated, capable of nonintrusively identifying harmful thermal stimuli and detecting motion status. This research not only establishes a technological foundation for accurate and stable noncontact sensing under high temperatures but also promotes the sustainable intelligent development of wearable IoT devices under extreme environments.

2.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427598

RESUMO

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Assuntos
Parede Celular , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Movimento (Física) , Porosidade
3.
BMC Genomics ; 25(1): 389, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649849

RESUMO

BACKGROUND: The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS: This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS: Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.


Assuntos
Genoma Bacteriano , Família Multigênica , Oxirredução , Filogenia , Rhodobacteraceae , Enxofre , Enxofre/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/classificação
4.
Nano Lett ; 23(20): 9333-9339, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37796035

RESUMO

Two-dimensional (2D) semiconductors offer great potential as high-performance materials for thin film transistors (TFTs) in displays. Their thin, stable, and flexible nature, along with excellent electrical properties, makes them suitable for flexible displays. However, previous demonstrations lacked clear superiority in pixel resolution and TFT performance. Here we present the flexible 2T1C pixel driving circuit for active-matrix displays based on high-quality large-scale monolayer MoS2. A gate-first fabrication process was developed for flexible MoS2-TFTs, showing a remarkable carrier mobility (average at 52.8 cm2 V-1 s-1), high on/off ratio (average at 1.5 × 108), and negligible hysteresis. The driving current can be modulated by pulsed input voltages and demonstrates a stable and prompt response to both frequency and amplitude. We also demonstrated a 10 × 10 active-matrix with high resolution of 508 pixels per inch, exhibiting 100% yield and high uniformity. The driving circuit works well under bending up to ∼0.91% strain, highlighting its normal functions in flexible displays.

5.
J Environ Manage ; 353: 120262, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330840

RESUMO

Land reclamation is a widely adopted method for managing land shortage and promoting coastal economic development globally. However, its impacts on biodiversity vary based on distinct reclamation histories and land use management strategies in different regions. This study aims to examine the effects of reclamation history and land use types at different spatial scales on anuran communities in coastal reclaimed land, which are an important taxon in the coastal ecosystem. We used visual and acoustic encounter methods to survey anurans in 2016 and 2017 across 20 1-km radius coastal land reclamation landscapes with different reclamation histories (10, 20, and 60 y after reclamation) in Nanhui Dongtan of Shanghai, an important coastal land reclamation region along the Yangtze River Estuary. Landscape variables (farmlands, woodlands, and impermeable surface covers, and the landscape Shannon diversity index) at four different spatial scales (250 m, 500 m, 750 m and 1000 m) and water salinity in each landscape were measured. Our findings reveal differences in anuran communities between study sites with 10, 20, and 60 years of reclamation history. Abundances of the ornamented pygmy frog (Microhyla fissipes) and Beijing gold-striped pond frog (Pelophylax plancyi) in landscapes with a 10-year reclamation history were significantly lower compared to those with histories of 20 and 60 years. Zhoushan toad (Bufo gargarizans) abundance was significantly negatively related to farmland cover at the 1000 m scale and impermeable surface cover at the 250 m scale; Hong Kong rice-paddy frog (Fejervarya multistriata) abundance was significantly positively related to farmland cover at the 1000 m scale; ornamented pygmy frog abundance was positively related to farmland cover at the 1000 m scale; and Beijing gold-striped pond frog abundance was significantly positively and negatively related to the landscape Shannon diversity index at the 1000 m scale and to water salinity, respectively. Amphibians quickly migrated and colonized coastal reclaimed land from older natural lands. However, two anuran species with specific habitat requirements tended to avoid areas with shorter reclamation histories. The single-species models revealed different responses to various land uses at the various scales, which indicated that land use management was important to amphibian conservation in coastal reclamation regions.


Assuntos
Biodiversidade , Ecossistema , Animais , China , Anuros , Água , Conservação dos Recursos Naturais/métodos
6.
J Environ Manage ; 351: 119864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109823

RESUMO

It is well accepted that tidal wetland vegetation performs a significant amount of water filtration for wetlands. However, there is currently little information on how various wetland plants remove nitrogen (N) and phosphorus (P) and how they differ in their denitrification processes. This study compared and investigated the denitrification and phosphorus removal effects of three typical wetland plants in the Yangtze River estuary wetland (Phragmites australis, Spartina alterniflora, and Scirpus mariqueter), as well as their relevant mechanisms, using an experimental laboratory-scale horizontal subsurface flow constructed wetland (CW). The results showed that all treatment groups with plants significantly reduced N pollutants as compared to the control group without plants. In comparison to S. mariqueter (77.2-83.2%), S. alterniflora and P. australis had a similar total nitrogen (TN)removal effectiveness of nearly 95%. With a removal effectiveness of over 99% for ammonium nitrogen (NH4+-N), P. australis outperformed S. alterniflora (95.6-96.8%) and S. mariqueter (94.6-96.5%). The removal of nitrite nitrogen (NO2--N)and nitrate nitrogen (NO3--N)from wastewater was significantly enhanced by S. alterniflora compared to the other treatment groups. Across all treatment groups, the removal rate of PO43--P was greater than 95%. P. australis and S. alterniflora considerably enriched more 15N than S. mariqueter, according to the results of the 15N isotope labeling experiment. While the rhizosphere and bulk sediments of S. alterniflora were enriched with more simultaneous desulfurization-denitrification bacterial genera (such as Paracoccus, Sulfurovum, and Sulfurimonas), which have denitrification functions, the rhizosphere and bulk sediments of P. australis were enriched with more ammonia-oxidizing archaea and ammonia-oxidizing bacteria. As a result, compared to the other plants, P. australis and S. alterniflora demonstrate substantially more significant ability to remove NH4+-N and NO2--N/NO3--N from simulated domestic wastewater.


Assuntos
Nitrogênio , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Amônia , Dióxido de Nitrogênio , Águas Residuárias , Plantas , Poaceae , China
7.
Biochem Cell Biol ; 101(4): 303-312, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927169

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células Endoteliais , Piroptose/fisiologia
8.
Cell Mol Life Sci ; 79(7): 375, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727412

RESUMO

The SLC25A32 dysfunction is associated with neural tube defects (NTDs) and exercise intolerance, but very little is known about disease-specific mechanisms due to a paucity of animal models. Here, we generated homozygous (Slc25a32Y174C/Y174C and Slc25a32K235R/K235R) and compound heterozygous (Slc25a32Y174C/K235R) knock-in mice by mimicking the missense mutations identified from our patient. A homozygous knock-out (Slc25a32-/-) mouse was also generated. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice presented with mild motor impairment and recapitulated the biochemical disturbances of the patient. While Slc25a32-/- mice die in utero with NTDs. None of the Slc25a32 mutations hindered the mitochondrial uptake of folate. Instead, the mitochondrial uptake of flavin adenine dinucleotide (FAD) was specifically blocked by Slc25a32Y174C/K235R, Slc25a32K235R/K235R, and Slc25a32-/- mutations. A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency was observed. Besides the flavoenzymes involved in fatty acid ß-oxidation and amino acid metabolism being impaired, Slc25a32-/- embryos also had a subunit of glycine cleavage system-dihydrolipoamide dehydrogenase damaged, resulting in glycine accumulation and glycine derived-formate reduction, which further disturbed folate-mediated one-carbon metabolism, leading to 5-methyltetrahydrofolate shortage and other folate intermediates accumulation. Maternal formate supplementation increased the 5-methyltetrahydrofolate levels and ameliorated the NTDs in Slc25a32-/- embryos. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice had no glycine accumulation, but had another formate donor-dimethylglycine accumulated and formate deficiency. Meanwhile, they suffered from the absence of all folate intermediates in mitochondria. Formate supplementation increased the folate amounts, but this effect was not restricted to the Slc25a32 mutant mice only. In summary, we established novel animal models, which enabled us to understand the function of SLC25A32 better and to elucidate the role of SLC25A32 dysfunction in human disease development and progression.


Assuntos
Ácido Fólico , Defeitos do Tubo Neural , Animais , Humanos , Camundongos , Carbono/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ácido Fólico/metabolismo , Formiatos/metabolismo , Glicina/metabolismo , Mitocôndrias/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo
9.
J Environ Manage ; 348: 119216, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839209

RESUMO

Invasive Spartina alterniflora has become a global management challenge in coastal wetlands. China has decided to eradicate it completely, but the high costs and its provision of beneficial ecosystem functions (EF, in the form of blue carbon and coastal protection) have raised concerns about its removal. Here, using the Yangtze Estuary as a case study, we explore a reasonable pathway of S. alterniflora management that balanced control of invasive species and EF. We simulated the spatial patterns of two key EF - blue carbon storage and wave attenuation - and identified appropriate zones for eradicating S. alterniflora based on their trade-offs. We observed contrasting patterns along the land-sea gradient for S. alterniflora community, with a decrease in blue carbon storage and an increase in wave attenuation. Notably, pioneer S. alterniflora near the foreshore displayed a high cluster of blue carbon storage (63.61 ± 7.33 Mg C ha-1) and dissipated nearly 70% of wave energy by a width of 163 m. The trade-offs between the two EF indicated that the eradication project should be implemented along the seawall rather than the foreshore. Even in the scenario of prioritized shore defense with the largest eradication zone, S. alterniflora still stored 43.1% more carbon (10.67 Gg C) compared to complete eradication and dissipated over 70% of wave energy in extreme events. Our study innovatively integrates eradication and reservation in S. alterniflora management, providing a sustainable and flexible spatial strategy that meets the needs of stakeholders.


Assuntos
Ecossistema , Áreas Alagadas , Poaceae/metabolismo , Espécies Introduzidas , China , Carbono/análise
10.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771090

RESUMO

Both insect ecdysone receptors and ultraspiracle belong to the nuclear receptor family. They form a nanoscale self-assembling complex with ecdysteroids in cells, transit into the nucleus, bind with genes to initiate transcription, and perform specific biological functions to regulate the molting, metamorphosis, and growth processes of insects. Therefore, this complex is an important target for the development of eco-friendly insecticides. The diamondback moth (Plutella xylostella) is a devastating pest of cruciferous vegetable crops, wreaking havoc worldwide and causing severe economic losses, and this pest has developed resistance to most chemical insecticides. In this study, highly pure EcR and USP functional domains were obtained by constructing a prokaryotic expression system for the diamondback moth EcR and USP functional domain genes, and the differences between EcR and USP binding domain monomers and dimers were analyzed using transmission electron microscopy and zeta potential. Radioisotope experiments further confirmed that the binding affinity of PonA to the EcR/USP dimer was enhanced approximately 20-fold compared with the binding affinity to the PxGST-EcR monomer. The differences between PonA and tebufenozide in binding with EcR/USP were examined. Molecular simulations showed that the hydrogen bonding network formed by Glu307 and Arg382 on the EcR/USP dimer was a key factor in the affinity enhancement. This study provides a rapid and sensitive method for screening ecdysone agonists for ecdysone receptor studies in vitro.


Assuntos
Inseticidas , Mariposas , Receptores de Esteroides , Animais , Ecdisona , Inseticidas/farmacologia , Receptores de Esteroides/metabolismo , Mariposas/metabolismo , Insetos/metabolismo , Proteínas de Transporte
11.
Clin Genet ; 102(3): 246-247, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35754111

RESUMO

A. The family pedigree. B. Whole exome sequencing of the proband-parent trio revealed c.611_612dupTG(p.M205*) variant of FITM2 gene as suspicious variant. C. Sanger sequencing confirmed that c.611_612dupTG(p.M205*) variant of FITM2 gene was homozygous in the proband, while the unaffected parents were heterozygous.


Assuntos
Homozigoto , China , Heterozigoto , Humanos , Mutação , Linhagem , Sequenciamento do Exoma
12.
Acta Pharmacol Sin ; 43(9): 2191-2201, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35022541

RESUMO

Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Vesículas Extracelulares , Humanos , Inflamação , Remodelação Vascular
13.
Lipids Health Dis ; 21(1): 11, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042526

RESUMO

BACKGROUND: Sitosterolemia is a lipid disorder characterized by the accumulation of phytosterols in plasma and organs, caused by mutations in the ABCG5 and/or ABCG8 genes. The disease is frequently misdiagnosed and mistreated as familial hypercholesterolemia (FH). To gain a better understanding of the disease, the current status of diagnosis and treatment of Chinese patients with sitosterolemia was reviewed and summarized. METHOD: Literature search was performed. The clinical features and molecular characteristics of Chinese patients with sitosterolemia were analysed. Four children with sitosterolemia and the treatment experience were described. RESULTS: Fifty-five patients with sitosterolemia have been reported in China. These patients were aged from 3 months to 67 years at diagnosis, and the median was 8 years of age. Several complications, such as xanthomas in 47 patients (85%), thrombocytopenia in 17 patients (31%), anemia in 14 patients (25%), and cardiovascular damage in 12 patients (22%), were observed. Thirty-nine patients (71%) exhibited mutations in the ABCG5 gene, 15 patients (27%) showed mutations in ABCG8, and variations in both genes occurred in one patient (2%). A patient with two clinically rare diseases, namely, sitosterolemia and glycogen storage disease type VI (GSD VI)), is reported here for the first time. The four reported patients were treated with low cholesterol and phytosterol-limited diet alone or combined with cholestyramine. Even though decreases were observed for total plasma cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C), and these levels were as low as normal in some patients, the levels of plant sterols remained above the normal range. However, TC, LDL-C and plant sterol levels remained at high levels in patients treated with a control diet control only. CONCLUSIONS: The analysis reveals that different from Caucasians carrying mainly variations in ABCG8, most Chinese patients have mutations in the ABCG5 gene, and Arg446Ter, Gln251Ter, anArg389His might be hot-spot mutations in Chinese patients. The current survey provides clinical data to enable the development of a standardized protocol for the diagnosis and treatment of sitosterolemia in China.


Assuntos
Hipercolesterolemia/diagnóstico , Enteropatias/diagnóstico , Erros Inatos do Metabolismo Lipídico/diagnóstico , Fitosteróis/efeitos adversos , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China , Feminino , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lactente , Enteropatias/complicações , Enteropatias/genética , Enteropatias/patologia , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fitosteróis/genética , Adulto Jovem
14.
BMC Pediatr ; 22(1): 267, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549678

RESUMO

BACKGROUND: Pathogenic mutations in the PHKG2 are associated with a very rare disease-glycogen storage disease IXc (GSD-IXc)-and are characterized by severe liver disease. CASE PRESENTATION: Here, we report a patient with jaundice, hypoglycaemia, growth retardation, progressive increase in liver transaminase and prominent hepatomegaly from the neonatal period. Genetic testing revealed two novel, previously unreported PHKG2 mutations (F233S and R320DfsX5). Functional experiments indicated that both F223S and R320DfsX5 lead to a decrease in key phosphorylase b kinase enzyme activity. With raw cornstarch therapy, hypoglycaemia and lactic acidosis were ameliorated and serum aminotransferases decreased. CONCLUSION: These findings expand the gene spectrum and contribute to the interpretation of clinical presentations of these two novel PHKG2 mutations.


Assuntos
Doença de Depósito de Glicogênio , Hipoglicemia , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Humanos , Recém-Nascido , Fígado/patologia , Mutação , Fosforilase Quinase/genética
15.
BMC Pediatr ; 22(1): 234, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488223

RESUMO

BACKGROUND: To investigate hypothalamic-pituitary-thyroid function in children of different ages, nutritional phases, and genotypes that were diagnosed with Prader-Willi syndrome (PWS), as well as the effects of recombinant human growth hormone (rhGH) treatment on thyroid hormones in PWS patients. METHODS: One hundred and thirty PWS patients (87 boys and 43 girls) aged from newborn to 15 years (y) (median 1.25 y, mean, SD: 2.95 ± 3.45 y), were surveyed in this study. Serum thyroid hormone levels were examined at least once per3-6 months during the 2 years follow-up study. Central hypothyroidism (C-HT) was identified as low/normal thyroid-stimulating hormone (TSH) and low free thyroxine 4 (FT4). RESULTS: All study participants had normal neonatal TSH screening test results. The prevalence of C-HT is 36.2% (47/130). No C-HT cases were diagnosed in PWS either below 1 month (m) or above 12 y. The prevalence of C-TH would be increased with age before 3 y until reaching the peak, followed by a gradual decline over the years. The prevalence of C-HT varies significantly at different ages (Pearson's χ2 = 19.915; p < 0.01). However, there is no correlation between the C-HT prevalence and nutritional phases (Pearson's χ2 = 4.992; p = 0.288), genotypes (Pearson's χ2 = 0.292; p = 0.864), or rhGH therapy (Pearson's χ2 = 1.799; p = 0.180). CONCLUSIONS: This study suggests the prevalence of C-TH was increased with the age before 3 y, and reached the peak in the 1 to 3 y group, then gradually declined over the years. There is no correlation between C-HT prevalence and nutritional phases, genotypes, or rhGH treatment.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Prader-Willi , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/tratamento farmacológico , Estudos Retrospectivos , Glândula Tireoide , Tireotropina
16.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806249

RESUMO

Deoxynivalenol (DON) is a secondary fungal metabolite that is associated with many adverse toxicological effects in agriculture as well as human/animal nutrition. Bioremediation efforts in recent years have led to the discovery of numerous bacterial isolates that can transform DON to less toxic derivatives. Both 3-keto-DON and 3-epi-DON were recently shown to exhibit reduced toxicity, compared to DON, when tested using different cell lines and mammalian models. In the current study, the toxicological assessment of 3-keto-DON and 3-epi-DON using in planta models surprisingly revealed that 3-keto-DON, but not 3-epi-DON, retained its toxicity to a large extent in both duckweeds (Lemna minor L.) and common wheat (Triticum aestivum L.) model systems. RNA-Seq analysis revealed that the exposure of L. minor to 3-keto-DON and DON resulted in substantial transcriptomic changes and similar gene expression profiles, whereas 3-epi-DON did not. These novel findings are pivotal for understanding the environmental burden of the above metabolites as well as informing the development of future transgenic plant applications. Collectively, they emphasize the fundamental need to assess both plant and animal models when evaluating metabolites/host interactions.


Assuntos
Fusarium , Tricotecenos , Animais , Biotransformação , Fusarium/metabolismo , Mamíferos/metabolismo , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Triticum/metabolismo
17.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293450

RESUMO

Asprosin is a newly discovered adipokine that is involved in regulating metabolism. Sympathetic overactivity contributes to the pathogenesis of several cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the regulation of sympathetic outflow and blood pressure. This study was designed to determine the roles and underlying mechanisms of asprosin in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male adult SD rats under anesthesia. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded, and PVN microinjections were performed bilaterally. Asprosin mRNA and protein expressions were high in the PVN. The high asprosin expression in the PVN was involved in both the parvocellular and magnocellular regions according to immunohistochemical analysis. Microinjection of asprosin into the PVN produced dose-related increases in RSNA, MAP, and HR, which were abolished by superoxide scavenger tempol, antioxidant N-acetylcysteine (NAC), and NADPH oxidase inhibitor apocynin. The asprosin promoted superoxide production and increased NADPH oxidase activity in the PVN. Furthermore, it increased the cAMP level, adenylyl cyclase (AC) activity, and protein kinase A (PKA) activity in the PVN. The roles of asprosin in increasing RSNA, MAP, and HR were prevented by pretreatment with AC inhibitor SQ22536 or PKA inhibitor H89 in the PVN. Microinjection of cAMP analog db-cAMP into the PVN played similar roles with asprosin in increasing the RSNA, MAP, and HR, but failed to further augment the effects of asprosin. Pretreatment with PVN microinjection of SQ22536 or H89 abolished the roles of asprosin in increasing superoxide production and NADPH oxidase activity in the PVN. These results indicated that asprosin in the PVN increased the sympathetic outflow, blood pressure, and heart rate via cAMP-PKA signaling-mediated NADPH oxidase activation and the subsequent superoxide production.


Assuntos
Núcleo Hipotalâmico Paraventricular , Superóxidos , Masculino , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Adenilil Ciclases/metabolismo , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Ratos Sprague-Dawley , Sistema Nervoso Simpático , Pressão Sanguínea , NADPH Oxidases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adipocinas/metabolismo , RNA Mensageiro/metabolismo
18.
Curr Microbiol ; 78(3): 1034-1038, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527165

RESUMO

The genus Algibacter belongs to the family Flavobacteriaceae of the Bacteroidetes, and all members of this genus were isolated from marine environments. Among the Algibacter species, two members, Algibacter lectus KMM 3902T and Algibacter wandonensis WS-MY22T, were isolated from green algae and sediment around a brown algae respectively. The 16S rRNA gene sequences of these two type strains possess 99.4% sequence similarity. In this study, further studies were undertaken to clarify the taxonomic assignments of the two species. Whole-genome sequence analysis showed that the similarities for other phylogenetic markers are also very high (i.e. 99.9% for gyrB, 99.6% for recA and 99.9% for rpoD). Average nucleotide identity, average amino acids identity and digital DNA-DNA hybridization value between A. lectus KMM 3902T and A. wandonensis WS-MY22T are 98.3%, 98.6% and 89.4% respectively, all clearly exceed suggested species delineation thresholds. Furthermore, phylogenetic trees based on sequences of 16S rRNA gene and up-to-date bacterial core gene set (UBCG) consisting of 92 genes provided additional evidence that A. lectus KMM 3902T and A. wandonensis WS-MY22T are very closely related. In addition, a review of their profiles indicated that A. lectus KMM 3902T and A. wandonensis WS-MY22T did not present pronounced differences at phenotypic and chemotaxonomic levels. Based on these evidence, we propose that A. wandonensis should be reclassified as later heterotypic synonyms of A. lectus.


Assuntos
Flavobacteriaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Biochem J ; 477(20): 3923-3934, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32497199

RESUMO

Pyroptosis is a recently discovered inflammatory form of programmed cell death which is mostly triggered by infection with intracellular pathogens and critically contributes to inflammation. Mitigating pyroptosis may be a potential therapeutic target in inflammatory diseases. However, small chemicals to reduce pyroptosis is still elusive. In the present study, we screened 155 chemicals from a microbial natural product library and found Geldanamycin, an HSP90 inhibitor, profoundly rescued THP-1 cells from pyroptosis induced by LPS plus Nigericin treatment. Consistently, other HSP90 inhibitors, including Radicicol, 17-DMAG and 17-AAG, all ameliorated pyroptosis in THP-1 cells by suppressing the inflammasome/Caspase-1/GSDMD signal pathway in pyroptosis. HSP90 inhibition compromised the protein stability of NLRP3, a critical component of the inflammasome. Moreover, up-regulated HSP70 may also contribute to this effect. HSP90 inhibition may thus be a potential therapeutic strategy in the treatment of inflammatory diseases in which pyroptosis plays a role.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Inflamação/metabolismo , Lactamas Macrocíclicas/farmacologia , Piroptose/efeitos dos fármacos , Caspase 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/toxicidade , Macrolídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nigericina/toxicidade , Proteínas de Ligação a Fosfato/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Regulação para Cima
20.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562610

RESUMO

Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C9 and C10. In addition, the C3-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases.


Assuntos
Micotoxinas/química , Tricotecenos/química , Sítios de Ligação , Grão Comestível/toxicidade , Contaminação de Alimentos , Fusarium/química , Fusarium/patogenicidade , Inativação Metabólica , Modelos Moleculares , Estrutura Molecular , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Fúngico/química , RNA Fúngico/efeitos dos fármacos , RNA Ribossômico/química , RNA Ribossômico/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Tricotecenos/metabolismo , Tricotecenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa