Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(6): C116-C124, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201005

RESUMO

Conventional dictionary-learning-based computed tomography (CT) reconstruction methods extract patches from an original image to train, ignoring the consistency of pixels in overlapping patches. To address the problem, this paper proposes a method combining convolutional sparse coding (CSC) with total variation (TV) for sparse-view CT reconstruction. The proposed method inherits the advantages of CSC by directly processing the whole image without dividing it into overlapping patches, which preserves more details and reduces artifacts caused by patch aggregation. By introducing a TV regularization term to enhance the constraint of the image domain, the noise can be effectively further suppressed. The alternating direction method of multipliers algorithm is employed to solve the objective function. Numerous experiments are conducted to validate the performance of the proposed method in different views. Qualitative and quantitative results show the superiority of the proposed method in terms of noise suppression, artifact reduction, and image details recovery.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
2.
Phys Med Biol ; 68(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36889004

RESUMO

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador , Linfonodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa