Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 945
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(26): 2778-2790, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38603632

RESUMO

ABSTRACT: Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.


Assuntos
Hepatócitos , Janus Quinase 2 , Fígado , Receptor Notch1 , Trombopoetina , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , Trombopoetina/metabolismo , Trombopoetina/genética , Camundongos , Fígado/metabolismo , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos Knockout , Transdução de Sinais , Fosforilação , Plaquetas/metabolismo , Camundongos Endogâmicos C57BL , Trombocitopenia/metabolismo , Trombocitopenia/genética , Trombocitopenia/patologia
2.
J Immunol ; 212(1): 57-68, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019127

RESUMO

Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Infecções por Salmonella , Animais , Camundongos , Salmonella typhimurium , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
3.
Nat Mater ; 23(5): 596-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418925

RESUMO

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

4.
EMBO Rep ; 24(7): e56404, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37255015

RESUMO

We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Histonas/metabolismo , Intestinos , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Divisão Celular/genética
5.
J Am Chem Soc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621358

RESUMO

Due to the unique effect of fluorine atoms, the efficient construction of high-value alkyl fluorides has attracted significant interest in modern drug development. However, enantioselective catalytic strategies for the efficient assembly of highly functionalized chiral C(sp3)-F scaffolds from simple starting materials have been underutilized. Herein, we demonstrate a nickel-catalyzed radical transfer strategy for the efficient, modular, asymmetric hydrogenation and hydroalkylation of alkenyl fluorides with primary, secondary, and tertiary alkyl halides under mild conditions. The transformation provides facile access to various structurally complex secondary and tertiary α-fluoro amide products from readily available starting materials with excellent substrate compatibility and distinct selectivity. Furthermore, the utility of this method is demonstrated by late-stage modifications and product derivatizations. Detailed mechanistic studies and DFT calculations have been conducted, showing that the rate-determining step for asymmetric hydrogenation reaction is NiH-HAT toward alkenyl fluorides and the stereo-determining step is alcohol coordination to Ni-enolates followed by a barrierless protonation. The mechanism for the asymmetric hydroalkylation reaction is also delivered in this investigation.

6.
J Am Chem Soc ; 146(9): 6294-6306, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377334

RESUMO

Aqueous electrochemical coupling reactions, which enable the green synthesis of complex organic compounds, will be a crucial tool in synthetic chemistry. However, a lack of informed approaches for screening suitable catalysts is a major obstacle to its development. Here, we propose a pioneering electrochemical reductive coupling reaction toward direct electrosynthesis of oxime from NOx and aldehyde. Through integrating experimental and theoretical methods, we screen out the optimal catalyst, i.e., metal Fe catalyst, that facilitates the enrichment and C-N coupling of key reaction intermediates, all leading to high yields (e.g., ∼99% yield of benzaldoxime) for the direct electrosynthesis of oxime over Fe. With a divided flow reactor, we achieve a high benzaldoxime production of 22.8 g h-1 gcat-1 in ∼94% isolated yield. This work not only paves the way to the industrial mass production of oxime via electrosynthesis but also offers references for the catalyst selection of other electrochemical coupling reactions.

7.
Mol Cancer ; 23(1): 81, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658978

RESUMO

The Neurotrophic tyrosine receptor kinase (NTRK) family plays important roles in tumor progression and is involved in tumor immunogenicity. Here, we conducted a comprehensive bioinformatic and clinical analysis to investigate the characteristics of NTRK mutations and their association with the outcomes in pan-cancer immunotherapy. In 3888 patients across 12 cancer types, patients with NTRK-mutant tumors showed more benefit from immunotherapy in terms of objective response rate (ORR; 41.7% vs. 27.5%; P < 0.001), progress-free survival (PFS; HR = 0.80; 95% CI, 0.68-0.96; P = 0.01), and overall survival (OS; HR = 0.71; 95% CI, 0.61-0.82; P < 0.001). We further constructed and validated a nomogram to estimate survival probabilities after the initiation of immunotherapy. Multi-omics analysis on intrinsic and extrinsic immune landscapes indicated that NTRK mutation was associated with enhanced tumor immunogenicity, enriched infiltration of immune cells, and improved immune responses. In summary, NTRK mutation may promote cancer immunity and indicate favorable outcomes in immunotherapy. Our results have implications for treatment decision-making and developing immunotherapy for personalized care.


Assuntos
Imunoterapia , Mutação , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/mortalidade , Biomarcadores Tumorais/genética , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Nomogramas , Biologia Computacional/métodos
8.
Biochem Biophys Res Commun ; 693: 149366, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38091842

RESUMO

INTRODUCTION: Celastrol is an active pentacyclic triterpenoid extracted from Tripterygium wilfordii and has anti-inflammatory and anti-tumor properties. Whether Celastrol modulates platelet function remains unknown. Our study investigated its role in platelet function and thrombosis. METHODS: Human platelets were isolated and incubated with Celastrol (0, 1, 3 and 5 µM) at 37 °C for 1 h to measure platelet aggregation, granules release, spreading, thrombin-induced clot retraction and intracellular calcium mobilization. Additionally, Celastrol (2 mg/kg) was intraperitoneally administrated into mice to evaluate hemostasis and thrombosis in vivo. RESULTS: Celastrol treatment significantly decreased platelet aggregation and secretion of dense or alpha granules induced by collagen-related peptide (CRP) or thrombin in a dose-dependent manner. Additionally, Celastrol-treated platelets showed a dramatically reduced spreading activity and decreased clot retraction. Moreover, Celastrol administration prolonged tail bleeding time and inhibited formation of arterial/venous thrombosis. Furthermore, Celastrol significantly reduced calcium mobilization. CONCLUSION: Celastrol inhibits platelet function and venous/arterial thrombosis, implying that it might be utilized for treating thrombotic diseases.


Assuntos
Ativação Plaquetária , Trombose , Humanos , Animais , Camundongos , Cálcio/metabolismo , Trombina/metabolismo , Hemostasia , Agregação Plaquetária , Plaquetas/metabolismo , Triterpenos Pentacíclicos , Trombose/metabolismo
9.
Small ; : e2309502, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282176

RESUMO

Accurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual-machine linkage nanodevice (DMLD) is proposed for the first time to achieve high-performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid-encoded multispike virus-like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor. The existence of spike vertices and interspike nanogaps in MVANs enables intense electromagnetic near-field focusing, allowing distinct surface-enhanced Raman scattering (SERS) activity. Moreover, through the sequential activation between multistage walker catalytic circuits, the DLMD system converts the limited TC recognition into massive engineering assemblies of SERS probes guided by DNA amplicons, resulting in synergistic enhancement of bulk plasmonic hotspot entities. The continuously guaranteed target recognition and progressively promoted signal enhancement ensure highly specific amplification analysis of TC, with a detection limit as low as 7.94 × 10-16  g mL-1 . Furthermore, the reliable recoveries in real samples confirm the practicability of the proposed sensing platform, highlighting the enormous potential of intelligent nanomachines for analyzing the trace hazards in the environment and food.

10.
BMC Microbiol ; 24(1): 206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858614

RESUMO

OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.


Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , Adulto
11.
Bioconjug Chem ; 35(5): 674-681, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695582

RESUMO

Aptamers are widely used molecular recognition tools in targeted therapy, but their ability to effectively penetrate deep into solid tumors remains a significant challenge, leading to suboptimal treatment efficacy. Here, we developed a polyfluoroalkyl (PFA) decoration strategy to enhance aptamer recognition, cell internalization, and solid tumor penetration. Our results indicate that PFA with around 11 fluorine atoms significantly improves aptamer internalization both in vitro and in vivo settings. However, we also observed that the use of PFA tags containing 19 and 23 fluorine atoms on aptamers resulted in nonspecific cell anchoring in control cell lines, affecting the specificity of aptamers. Overall, we found that using a chemical modification strategy could enhance the deep tumor penetration ability of aptamers and validate their effectiveness in vivo. This approach has significant practical applications in targeted drug delivery for cancer treatment.


Assuntos
Aptâmeros de Nucleotídeos , Receptores Proteína Tirosina Quinases , Aptâmeros de Nucleotídeos/química , Humanos , Animais , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Camundongos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos
12.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199493

RESUMO

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia , RNA Mensageiro/metabolismo
13.
BMC Cancer ; 24(1): 680, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834983

RESUMO

BACKGROUND: Drug repurposing provides a cost-effective approach to address the need for lung cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR). METHODS: Summary-level data of gene expression quantitative trait loci (eQTLs) were sourced from the eQTLGen resource. We procured genetic associations with lung cancer and its subtypes from the TRICL, ILCCO studies (discovery) and the FinnGen study (replication). We implemented Summary-data-based Mendelian Randomization analysis to identify potential therapeutic targets for lung cancer. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant. FINDINGS: In the main analysis dataset, we identified 55 genes that demonstrate a causal relationship with lung cancer and its subtypes. However, in the replication cohort, only three genes were found to have such a causal association with lung cancer and its subtypes, and of these, HYKK (also known as AGPHD1) was consistently present in both the primary analysis dataset and the replication cohort. Following HEIDI tests and colocalization analyses, it was revealed that HYKK (AGPHD1) is associated with an increased risk of squamous cell carcinoma of the lung, with an odds ratio and confidence interval of OR = 1.28,95%CI = 1.24 to 1.33. INTERPRETATION: We have found that the HYKK (AGPHD1) gene is associated with an increased risk of squamous cell carcinoma of the lung, suggesting that this gene may represent a potential therapeutic target for both the prevention and treatment of lung squamous cell carcinoma.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Reposicionamento de Medicamentos , Terapia de Alvo Molecular/métodos
14.
Anticancer Drugs ; 35(6): 492-500, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477942

RESUMO

The resistance of oral squamous cell carcinoma (OSCC) cells to cisplatin remains a tough nut to crack in OSCC therapy. Homeobox A1 (HOXA1) overexpression has been detected in head and neck squamous carcinoma (HNSC). Accordingly, this study aims to explore the potential role and mechanism of HOXA1 on cisplatin resistance in OSCC. The expression of HOXA1 in HNSC and its role in overall survival (OS) rate of OSCC patients were analyzed by bioinformatic analysis. Following transfection as needed, OSCC cells were induced by different concentrations of cisplatin, and the cell viability and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays. The mRNA and protein expression levels of HOXA1 and the phosphorylation of IκBα and p65 were determined by real-time quantitative PCR and western blot. HOXA1 expression level was upregulated in HNSC tissues and OSCC cells. Overexpressed HOXA1 was correlated with a low OS rate of OSCC patients. Cisplatin exerted an anti-cancer effect on OSCC cells. HOXA1 silencing or cisplatin suppressed OSCC cell viability, boosted the apoptosis, and repressed the phosphorylation of IκBα and p65. Intriguingly, the combination of HOXA1 silencing and cisplatin generated a stronger anti-cancer effect on OSCC cells than their single use. HOXA1 silencing attenuates cisplatin resistance of OSCC cells via IκB/NF-κB signaling pathway, hinting that HOXA1 is a biomarker associated with OSCC and HOXA1 silencing can enhance the sensitivity of OSCC cells to cisplatin.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio , Neoplasias Bucais , NF-kappa B , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas I-kappa B/metabolismo
15.
Eur J Haematol ; 112(1): 94-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37477866

RESUMO

OBJECTIVES: To investigate the effectiveness of donor-derived chimeric antigen receptor T (CAR-T) cells in the treatment of relapsed cases after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and whether donor-derived peripheral blood stem cells (PBSCs) have a therapeutic effect on pancytopenia after CAR-T cell therapy. METHODS: We analyzed data from five adults with B-cell acute lymphoblastic leukemia (ALL) who had relapse after allo-HSCT and received donor-derived CAR-T cell therapy and donor-derived PBSCs to promote hematopoietic recovery. RESULTS: All patients had negative minimal residual disease after CAR-T therapy, grade 1-2 cytokine release syndrome, and developed grade 4 hematologic toxicity. During the pancytopenia stage after CAR-T cell therapy, donor-derived PBSCs were transfused without graft-versus-host disease (GVHD) prophylaxis. Four patients had grade I-II acute GVHD (aGVHD). After corticosteroid treatment, aGVHD resolved and hematopoiesis was restored. Although steroids in combination with etanercept and ruxolitinib relieved symptoms in one patient with grade IV aGVHD, complete hematopoietic recovery was not achieved, and the patient died due to severe infection. CONCLUSIONS: Donor-derived CAR-T cell therapy is safe and effective in patients with relapsed/refractory ALL after allo-HSCT. Donor-derived PBSCs infusion could achieve hematopoietic recovery with controllable aGVHD in patients with persistent pancytopenia.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pancitopenia , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19 , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Pancitopenia/diagnóstico , Pancitopenia/etiologia , Pancitopenia/terapia , Linfócitos T
16.
Eur Radiol ; 34(2): 761-769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37597031

RESUMO

OBJECTIVE: To define a response-to-ablation system based on dynamic risk stratification proposed by the 2015 American Thyroid Association guidelines for predicting clinical outcomes and guiding follow-up strategies for patients with low-risk papillary thyroid microcarcinoma (PTMC) who underwent radiofrequency ablation (RFA). METHODS: This retrospective study reviewed patients with low-risk PTMC who underwent RFA between 2014 and 2018. We classified patients into three groups based on their response to therapy at the 1-year follow-up: complete, indeterminate, and incomplete. The primary endpoints were local tumor progression (LTP) and disease-free survival (DFS). RESULTS: Among the 748 patients (mean age, 43.7 years ± 9.8; 586 women), 4.0% (30/748) had LTP during a median follow-up of 5 years. The response was complete in 80.2% (600/748) of the patients, indeterminate in 18.1% (135/748), and incomplete in 1.7% (13/748). The LTP rate in the final follow-up was 1% (6/600), 8.1% (11/135), and 100% (13/13), respectively. The risk of LTP was significantly different in the incomplete response group (HR, 1825.82; 95% CI: 458.27, 7274.36; p < 0.001) and indeterminate response group (HR, 8.12; 95% CI: 2.99, 22.09; p < 0.001) than in the complete response group. There were significant differences in DFS among groups (p < 0.001). The proportion of variation explained and C-index of the system was high (27.66% and 0.79, respectively). CONCLUSIONS: We defined a response-to-ablation system that provides a new paradigm for the management of patients with PTMC who underwent RFA. Our data confirm that the system can effectively predict the risk of LTP and guide ongoing follow-up recommendations. KEY POINTS: • The response-to-ablation system can classify patients with low-risk PTMC who underwent RFA into complete, indeterminate, or incomplete response categories. • Results suggest that, in this population, this system can identify three separate cohorts of patients who have significantly different clinical outcomes. • The response-to-ablation system will help better tailor the ongoing follow-up recommendations.


Assuntos
Carcinoma Papilar , Ablação por Radiofrequência , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adulto , Seguimentos , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Ablação por Radiofrequência/métodos , Resultado do Tratamento
17.
Fish Shellfish Immunol ; 146: 109438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341116

RESUMO

The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).


Assuntos
Doenças dos Peixes , Infecções por Orthomyxoviridae , Receptores Virais , Tilápia , Vírus , Animais , Tilápia/genética
18.
Brain ; 146(7): 3079-3087, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625892

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and heterozygous HTRA1 mutation-related cerebral small vessel disease (CSVD) are the two types of dominant hereditary CSVD. Blood-brain barrier (BBB) failure has been hypothesized in the pathophysiology of CSVD. However, it is unclear whether there is BBB damage in the two types of hereditary CSVD, especially in heterozygous HTRA1 mutation-related CSVD. In this study, a case-control design was used with two disease groups including CADASIL (n = 24), heterozygous HTRA1 mutation-related CSVD (n = 9) and healthy controls (n = 24). All participants underwent clinical cognitive assessments and brain MRI. Diffusion-prepared pseudo-continuous arterial spin labelling was used to estimate the water exchange rate across the BBB (kw). Correlation and multiple linear regression analyses were used to examine the association between kw and disease burden and neuropsychological performance, respectively. Compared with the healthy controls, kw in the whole brain and multiple brain regions was decreased in both CADASIL and heterozygous HTRA1 mutation-related CSVD patients (Bonferroni-corrected P < 0.007). In the CADASIL group, decreased kw in the whole brain (ß = -0.634, P = 0.001), normal-appearing white matter (ß = -0.599, P = 0.002) and temporal lobe (ß = -0.654, P = 0.001) was significantly associated with higher CSVD score after adjusting for age and sex. Reduced kw in the whole brain was significantly associated with poorer neuropsychological performance after adjusting for age, sex and education in both CADASIL and heterozygous HTRA1 mutation-related CSVD groups (ß = 0.458, P = 0.001; ß = 0.884, P = 0.008). This study showed that there was decreased water exchange rate across the BBB in both CADASIL and heterozygous HTRA1 mutation-related CSVD patients, suggesting a common pathophysiological mechanism underlying the two types of hereditary CSVD. These results highlight the potential use of kw for monitoring the course of CADASIL and heterozygous HTRA1 mutation-related CSVD, a possibility which should be tested in future research.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Humanos , Barreira Hematoencefálica , CADASIL/genética , Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Infarto Cerebral
19.
Cereb Cortex ; 33(9): 5484-5492, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36376927

RESUMO

Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and dementia. Although increasing studies have reported alterations of brain structural or neuronal functional activity exhibited in patients with CSVD, it is still unclear which alterations are reliable. Here, we performed a meta-analysis to establish which brain structural or neuronal functional activity changes in those studies were consistent. Activation likelihood estimation revealed that changes in neuronal functional activity in the left angular gyrus, bilateral anterior cingulate cortex/left medial prefrontal cortex, right rolandic operculum, and alterations of gray structure in the left insular cortex/superior temporal gyrus/claustrum were reliable in sporadic CSVD. Decreased neuronal functional activity in the caudate head, anterior cingulate cortex, and reduced gray matter volume in the insular cortex/superior temporal gyrus/claustrum were associated with CSVD-related cognitive impairment. Furthermore, unlike sporadic CSVD, the reliable alterations of neuronal functional activity in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were concentrated in the left parahippocampal gyrus. The current study presents stable brain structural and neuronal functional abnormalities within the brain, which can help further understand the pathogenesis of CSVD and CSVD-cognitive impairment and provide an index to evaluate the effectiveness of treatment protocols. HIGHLIGHTS: • Default mode network and salience network are reliable networks affected in sporadic CSVD in resting-state.• Altered corticostriatal circuitry is associated with cognitive decline.• Decreased gray matter volume in the insular cortex is stable "remote effects" of sporadic CSVD.• The parahippocampal gyrus may be a reliable affected brain region in CADASIL.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Substância Cinzenta/patologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia
20.
Cereb Cortex ; 33(17): 9867-9876, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37415071

RESUMO

Menstrually-related migraine (MM) is a primary migraine in women of reproductive age. The underlying neural mechanism of MM was still unclear. In this study, we aimed to reveal the case-control differences in network integration and segregation for the morphometric similarity network of MM. Thirty-six patients with MM and 29 healthy females were recruited and underwent MRI scanning. The morphometric features were extracted in each region to construct the single-subject interareal cortical connection using morphometric similarity. The network topology characteristics, in terms of integration and segregation, were analyzed. Our results revealed that, in the absence of morphology differences, disrupted cortical network integration was found in MM patients compared to controls. The patients with MM showed a decreased global efficiency and increased characteristic path length compared to healthy controls. Regional efficiency analysis revealed the decreased efficiency in the left precentral gyrus and bilateral superior temporal gyrus contributed to the decreased network integration. The increased nodal degree centrality in the right pars triangularis was positively associated with the attack frequency in MM. Our results suggested MM would reorganize the morphology in the pain-related brain regions and reduce the parallel information processing capacity of the brain.


Assuntos
Encéfalo , Transtornos de Enxaqueca , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Transtornos de Enxaqueca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Dor
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa