Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158082

RESUMO

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to eight alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pse. libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pse. strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.

2.
Anal Chem ; 96(18): 7111-7119, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648270

RESUMO

Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.


Assuntos
Aziridinas , Lipídeos , Aziridinas/química , Lipídeos/química , Lipídeos/análise , Isomerismo , Espectrometria de Massas em Tandem/métodos , Espectrometria de Mobilidade Iônica/métodos
3.
Anal Chem ; 96(32): 13278-13284, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092917

RESUMO

Abnormal expression in long noncoding RNAs (lncRNAs) is closely associated with cancers. Herein, a novel CRISPR/Cas13a-enhanced photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was engineered for the joint detection of dual lncRNAs, using deep learning (DL) to assist in cancer diagnosis. After target lncRNA-activated CRISPR/Cas13a cleaves to induce DNAzyme bidirectional walkers with the help of cofactor Mg2+, nitrogen-doped carbon-Cu/Cu2O octahedra are introduced into the biosensor, producing a photocurrent in the opposite direction of CdS quantum dots (QDs). The developed PEC biosensor shows high specificity and sensitivity with limits of detection down to 25.5 aM for lncRNA HOTAIR and 53.1 aM for lncRNA MALAT1. More importantly, this platform for the lncRNA joint assay in whole blood can successfully differentiate cancers from healthy people. Furthermore, the DL model is applied to explore the potential pattern hidden in data of the established technology, and the accuracy of DL cancer diagnosis can acquire 93.3%. Consequently, the developed platform offers a new avenue for lncRNA joint detection and early intelligent diagnosis of cancer.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Pontos Quânticos/química , Técnicas Eletroquímicas , Sistemas CRISPR-Cas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Compostos de Cádmio/química , Sulfetos/química , Limite de Detecção , Processos Fotoquímicos
4.
Anal Chem ; 96(5): 1977-1984, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258619

RESUMO

Free unsaturated fatty acids (UFA) are key intermediates of lipid metabolism and participate in many metabolic pathways with specific biological functions. Although various fragmentation-based methods for pinpointing C═C locations in UFA were developed, the current mass spectrometry methods are difficult to simultaneously differentiate geometric isomers and positional isomers in trace samples due to low ionization efficiency, low conversion, and low resolution. Herein, an intramolecular ring-chain equilibrium elimination strategy via 4-plex stable isotope labeling dual derivatization-assisted ion mobility-mass spectrometry was developed, thereby one-pot specifically labeling C═C and carboxyl groups among the trace and unstable UFA with high sensitivity, high efficiency, and good substrate generality. It achieved fast separation of both C═C positional and geometric isomers with high resolution, which benefited from eliminating the intramolecular ring-chain equilibrium by suppressing the formation of salt bridges between free carboxyl groups and pyridine cations. 4-plex stable isotope labeling reagents showed similar reactivity, enabling high-throughput quantitative analysis of omics. This method was successfully applied for accurate and rapid identification of the UFA composition in olive oil extract. These results suggest that the developed method provides new insight for rapid characterization of UFA C═C positional and geometric isomers in complex samples to explore disease biomarkers and food quality control indicators.

5.
Plant Biotechnol J ; 22(6): 1453-1467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38163293

RESUMO

Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.


Assuntos
Proteínas de Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Variação Genética , Endosperma/genética , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Exp Bot ; 75(11): 3287-3299, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38457358

RESUMO

Kernel weight is a critical agronomic trait in maize production. Many genes are related to kernel weight but only a few of them have been applied to maize breeding and cultivation. Here, we identify a novel function of maize mitogen-activated protein kinase 6 (ZmMPK6) in the regulation of maize kernel weight. Kernel weight was reduced in zmmpk6 mutants and increased in ZmMPK6-overexpressing lines. In addition, starch granules, starch content, protein content, and grain-filling characteristics were also affected by the ZmMPK6 expression level. ZmMPK6 is mainly localized in the nucleus and cytoplasm, widely distributed across various tissues, and is expressed during kernel development, which is consistent with its role in kernel weight. Thus, these results provide new insights into the role of ZmMPK6, a mitogen-activated protein kinase, in maize kernel weight, and could be applied to further molecular breeding for kernel quality and yield in maize.


Assuntos
Proteínas de Plantas , Sementes , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética
7.
J Biol Inorg Chem ; 29(2): 265-278, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38189962

RESUMO

Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Lisossomos , Poloxâmero , Rutênio , Humanos , Poloxâmero/química , Poloxâmero/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estresse Oxidativo/efeitos dos fármacos
8.
Int J Neuropsychopharmacol ; 27(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408281

RESUMO

BACKGROUND: The efficacy of pharmacological and nutritional interventions in individuals at clinical high risk for psychosis (CHR-P) remains elusive. This study aims to investigate the efficacy of pharmacological and nutritional interventions in CHR-P and whether these interventions can enhance the efficacy of psychological treatments. METHODS: We systematically reviewed data from 5 databases until July 24, 2021: PubMed, Web of Science, EMBASE, China National Knowledge Infrastructure, and WanFang Data. The primary outcome was the transition to psychosis. Network meta-analyses were conducted at 3 time points (6, 12, and ≥24 months) considering both pharmacological/nutritional interventions alone and its combination with psychotherapy. RESULTS: Out of 11 417 identified references, 21 studies were included, comprising 1983 participants. CHR-P participants receiving omega-3 polyunsaturated fatty acids treatment were associated with a lower probability of transition compared with placebo/control at 6 months (odds ratio [OR] = 0.07, 95% confidence interval [CI] = .01 to .054), 12 months (OR = 0.14, 95% CI = .03 to .66), and ≥24 months (OR = 0.16, 95% CI = .05 to .54). Moreover, risperidone plus psychotherapy was associated with a lower likelihood of transition at 6 months compared with placebo/control plus psychotherapy, but this result was not sustained over longer durations. CONCLUSION: Omega-3 polyunsaturated fatty acids helped in preventing transitions to psychosis compared with controls. PROSPERO REGISTRATION NUMBER: CRD42021256209.


Assuntos
Ácidos Graxos Ômega-3 , Metanálise em Rede , Transtornos Psicóticos , Humanos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Transtornos Psicóticos/prevenção & controle , Transtornos Psicóticos/terapia , Psicoterapia/métodos , Antipsicóticos/uso terapêutico , Antipsicóticos/administração & dosagem
9.
Langmuir ; 40(24): 12553-12564, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829289

RESUMO

In this study, dopamine-modified graphene aerogel (DGA) is synthesized through a one-step hydrothermal method using graphene oxide as the precursor and dopamine as the reducing agent. Subsequently, in situ immersion synthesis is conducted to obtain ZIF-8 loaded on a dopamine-modified graphene aerogel skeleton (ZDGA), featuring a regular honeycomb interconnected mesoporosity and a high specific surface area of 532.8 m2/g. The synthesized ZDGA exhibited exceptional adsorption performance for the cationic dye malachite green. At room temperature, ZDGA achieved an impressive equilibrium adsorption capacity of 6578.34 mg/g. The adsorption process followed pseudo-secondary kinetics and adhered to the Langmuir model, indicating chemically dominated adsorption on a monomolecular layer. Intraparticle diffusion was the primary rate determinant, with π-π stacking, electrostatic adsorption, hydrogen bonding, and Lewis acid-base interactions serving as the key driving forces. It has an ideal specific surface area and good cycling performance, which highlights its potential application in dye wastewater treatment.

10.
Circ Res ; 131(1): 109-126, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737757

RESUMO

Cardiovascular defects, injuries, and degenerative diseases often require surgical intervention and the use of implantable replacement material and conduits. Traditional vascular grafts made of synthetic polymers, animal and cadaveric tissues, or autologous vasculature have been utilized for almost a century with well-characterized outcomes, leaving areas of unmet need for the patients in terms of durability and long-term patency, susceptibility to infection, immunogenicity associated with the risk of rejection, and inflammation and mechanical failure. Research to address these limitations is exploring avenues as diverse as gene therapy, cell therapy, cell reprogramming, and bioengineering of human tissue and replacement organs. Tissue-engineered vascular conduits, either with viable autologous cells or decellularized, are the forefront of technology in cardiovascular reconstruction and offer many benefits over traditional graft materials, particularly in the potential for the implanted material to be adopted and remodeled into host tissue and thus offer safer, more durable performance. This review discusses the key advances and future directions in the field of surgical vascular repair, replacement, and reconstruction, with a focus on the challenges and expected benefits of bioengineering human tissues and blood vessels.


Assuntos
Sistema Cardiovascular , Engenharia Tecidual , Animais , Bioengenharia , Engenharia Biomédica , Prótese Vascular , Humanos
11.
BMC Cardiovasc Disord ; 24(1): 389, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068390

RESUMO

BACKGROUND: Evidence suggests that coronavirus disease 2019 (COVID-19) is associated with the risk of cardiovascular diseases (CVDs). However, the results are inconsistent, and the causality remains to be established. We aimed to investigate the potential causal relationship between COVID-19 and CVDs by using two-sample Mendelian randomization (MR) analysis. METHODS: Summary-level data for COVID-19 and CVDs including myocarditis, heart failure (HF), acute myocardial infarction (AMI), arrhythmia and venous thromboembolism (VTE) were obtained from the IEU OpenGWAS project, a public genome-wide association study (GWAS). Single nucleotide polymorphisms (SNPs) were used as instrumental variables. Five complementary MR methods were performed, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode and simple mode methods. IVW method was considered as the primary approach. Besides, sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, and leave-one-out analysis, were performed to evaluate the robustness of the results. RESULTS: According to the IVW results, our MR study indicated that genetically predicted COVID-19 was not causally connected with the risk of CVDs [myocarditis: odds ratio (OR) = 1.407, 95% confidence interval (CI) = 0.761-2.602, p-value = 0.277; HF: OR = 1.180, 95% CI = 0.980-1.420, p-value = 0.080; AMI: OR = 1.002, 95% CI = 0.998-1.005, p-value = 0.241; arrhythmia: OR = 0.865, 95% CI = 0.717-1.044, p-value = 0.132; VTE: OR = 1.013, 95% CI = 0.997-1.028, p-value = 0.115]. The supplementary MR methods showed similar results. Sensitivity analyses suggested that the causal estimates were robust. CONCLUSION: This two-sample MR analysis did not provide sufficient evidence for a causal relationship between COVID-19 and the risk of acute CVDs, which may provide new insights into the prevention of acute CVDs in COVID-19 patients.


Assuntos
COVID-19 , Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , COVID-19/diagnóstico , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/diagnóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/genética , Predisposição Genética para Doença , Doença Aguda
12.
Artigo em Inglês | MEDLINE | ID: mdl-38861240

RESUMO

Both the BDNF gene rs6265 and the FKBP5 gene rs1360780 polymorphisms are independently associated with adult psychotic-like experiences, when exposed to high childhood abuse; however, it remains unclear whether the relationship between childhood abuse and burnout is moderated by these two single nucleotide polymorphisms (SNPs). Furthermore, there is an interaction between glucocorticoid receptor transcriptional activity and BDNF signaling. Therefore, we investigated the interaction of these two SNPs with childhood trauma in predicting burnout. We recruited 990 participants (mean age 33.06 years, S.D. = 6.31) from general occupational groups and genotyped them for rs6265 and rs1360780. Burnout, childhood trauma, resilience, and job stress were measured through a series of rating scales. Gene-by-environment and gene-by-gene-by-environment interactions were examined using linear hierarchical regression and PROCESS macro in SPSS. Covariates included demographics and resilience. We found that rs6265 moderated the association between job stress and emotional exhaustion. Both rs6265 and rs1360780 moderated the association between childhood abuse and cynicism. There was significant interaction of childhood abuse × rs6265 × rs1360780 on emotional exhaustion and reduced personal accomplishment, so that rs6265 CC genotype and rs1360780 TT genotype together predicted higher levels of emotional exhaustion under high childhood abuse, while rs6265 TT genotype and rs1360780 CC genotype together exerted a resilient effect on reduced personal accomplishment in the face of childhood abuse. Our findings suggest that the rs6265 CC genotype and rs1360780 TT genotype may jointly contribute to increased risk of burnout under childhood trauma.

13.
Cell Mol Biol Lett ; 29(1): 20, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267862

RESUMO

BACKGROUND: Cisplatin (DDP) is a widely used chemotherapy drug for advanced cervical cancer (CC), but resistance poses a significant challenge. While miR-4739 has been implicated in tumor development, its specific role in regulating DDP resistance in CC remains unclear. METHODS: We analyzed the expression levels of miR-4739 and RHBDD2 in DDP-resistant and DDP-sensitive CC tissues using quantitative real-time polymerase chain reaction (PCR) and assessed their correlation through Spearman's correlation analysis. DDP-resistant CC cell lines (HeLa/DDP and SiHa/DDP) were established by gradually increasing DDP concentrations, followed by transfection with miR-4739 mimics, si-RHBDD2, or a RHBDD2 overexpression vector. A series of functional assays, including CCK-8 assay, colony formation, flow cytometry, and transwell assay were performed. The interaction between miR-4739 and RHBDD2 was confirmed by luciferase reporter assay. We examined the protein levels of RHBDD2, P-gP, MRP1, cleaved caspase-3, and E-cadherin through western blot analysis. Moreover, we generated xenograft tumors by injecting stably transfected HeLa/DDP cells into mice to compare their tumorigenesis capacity. RESULTS: We observed downregulation of miR-4739 and upregulation of RHBDD2 in DDP-resistant CC tissues and cell lines. MiR-4739 was shown to directly bind to RHBDD2 gene sequences to repress RHBDD2 expression in HeLa/DDP and SiHa/DDP cells. Our in vitro and in vivo experiments demonstrated that overexpressing miR-4739 overcame DDP resistance in CC cells by targeting RHBDD2. Furthermore, RHBDD2 overexpression reversed the effects of miR-4739 mimics on drug-resistance-related proteins (P-gP and MRP1) and the expression of cleaved caspase-3 and E-cadherin in HeLa/DDP cells. CONCLUSIONS: In summary, our study revealed that miR-4739 can reverse DDP resistance by modulating RHBDD2 in CC cells.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Caspase 3 , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Células HeLa , Caderinas , MicroRNAs/genética , Proteínas de Membrana/genética
14.
Lipids Health Dis ; 23(1): 275, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210350

RESUMO

Despite recent findings indicating a paradoxical association between high-density lipoprotein cholesterol (HDL-C) levels and cardiovascular disease (CVD) mortality, the impact of HDL-C on subsequent outcomes after ischemic stroke remains unclear. The study aims to investigate the relationships between HDL-C levels and post-stroke functional outcomes while examining the potential modifying influence of HDL-C-related single nucleotide polymorphisms identified through genome-wide association studies. This cohort study included 1,310 patients diagnosed with acute ischemic stroke (AIS), all of whom had their admission serum lipid profile and genotyping information. Participants were categorized into four groups based on gender and HDL-C level. Prognostic outcomes were assessed using a modified Rankin Scale (mRS) at 1, 3, and 12 months post-admission. Multivariate logistic regression and restricted cubic spline regression analysis were used to assess the associations between HDL-C levels and outcomes. The mean age of patients was 61.17 ± 12.08 years, and 69.31% were men. After adjusting confounders, patients with the highest HDL-C level group had a significantly higher risk of poor functional outcomes at 1, 3, and 12 months following stroke compared to the reference group. Restricted cubic splines depicted a nonlinear association between HDL-C levels and poor prognosis in both men and women. The ABCA1 gene rs2575876 AA genotype combined with abnormal HDL-C levels exhibited a significantly heightened risk of post-stroke adverse outcomes at 1 and 3 months compared to patients with normal HDL-C levels and GG + GA genotype. These findings suggest that the combined effects of ABCA1 genetic variants with either low or high HDL-C levels could further heighten this risk.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , HDL-Colesterol , AVC Isquêmico , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , AVC Isquêmico/genética , AVC Isquêmico/sangue , Idoso , HDL-Colesterol/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Taiwan , Prognóstico , Lipoproteínas HDL/sangue , Lipoproteínas HDL/genética , Fatores de Risco , Genótipo
15.
J Environ Manage ; 353: 120241, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301473

RESUMO

With global population growth and climate change, food security and global warming have emerged as two major challenges to agricultural development. Plastic film mulching (PM) has long been used to improve yields in rain-fed agricultural systems, but few studies have focused on soil gas emissions from mulched rainfed potatoes on a long-term and regional scale. This study integrated field data with the Denitrification-Decomposition (DNDC) model to evaluate the impacts of PM on potato yields, greenhouse gas (GHG) and ammonia (NH3) emissions in rainfed agricultural systems in China. We found that PM increased potato yield by 39.7 % (1505 kg ha-1), carbon dioxide (CO2) emissions by 15.4 % (123 kg CO2 eq ha-1), nitrous oxide (N2O) emissions by 47.8 % (1016 kg CO2 eq ha-1), and global warming potential (GWP) by 38.9 % (1030 kg CO2 eq ha-1), while NH3 volatilization decreased by 33.9 % (8.4 kg NH3 ha-1), and methane (CH4) emissions were little changed compared to CK. Specifically, the yield after PM significantly increased in South China (SC), North China (NC), and Northwest China (NWC), with increases of 66.1 % (2429 kg ha-1), 44.1 % (1173 kg ha-1), and 43.6 % (956 kg ha-1) compared to CK, respectively. The increase in GWP and greenhouse gas emission intensity (GHGI) under PM was more pronounced in the Northeast China (NEC) and NWC regions, with respective increases of 57.1 % and 60.2 % in GWP, 16.9 % and 10.3 % in GHGI. While in the Middle and Lower reaches of the Yangtze River (MLYR) and SC, PM decreased GHGI with 10.2 % and 31.1 %, respectively. PM significantly reduced NH3 emissions in all regions and these reductions were most significant in Southwest China (SWC), SCand MLYR, which were 41 %, 38.0 %, and 38.0 % lower than CK, respectively. In addition, climatic and edaphic variables were the main contributors to GHG and NH3 emissions. In conclusion, it is appropriate to promote the use of PM in the MLYR and SC regions, because of the ability to increase yields while reducing environmental impacts (lower GHGI and NH3 emissions). The findings provide a theoretical basis for sustainable agricultural production of PM potatoes.


Assuntos
Gases de Efeito Estufa , Solanum tuberosum , Gases de Efeito Estufa/análise , Amônia , Dióxido de Carbono/análise , Agricultura , Solo , China , Metano/análise , Óxido Nitroso/análise , Fertilizantes/análise
16.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398527

RESUMO

Legubicin, a novel prodrug based on doxorubicin, has both albumin-binding and legumain-activating properties. The aim of this study was to develop and validate a UHPLC-MS/MS method for investigating the in vivo pharmacokinetics and tissue distribution profiles of legubicin in rats and tumor-bearing mice following intravenous administration, and to compare this prodrug with the positive control drug doxorubicin. The study employed a UHLC-MS/MS method to determine the levels of albumin-bound of legubicin and two metabolites (free Leu-DOX and DOX) in plasma, tumor, and tissue samples. This method was validated for good selectivity, high sensitivity, excellent extraction recovery, and short run time. The results showed that legubicin was present in the circulation in vivo mainly in a protein-bound form with larger AUC values and lower clearance and distribution, and essentially released small amounts of doxorubicin. Compared to administration of equimolar doses of doxorubicin, legubicin showed increased exposure of the active drug in the tumor and decreased the level of the active drug in the heart and kidney. This study provides valuable information on the pharmacokinetics and tissue distribution of legubicin, implicating its potential as a novel and effective drug candidate for anti-cancer therapies.


Assuntos
Cisteína Endopeptidases , Neoplasias , Pró-Fármacos , Camundongos , Ratos , Animais , Pró-Fármacos/química , Cromatografia Líquida de Alta Pressão , Distribuição Tecidual , Espectrometria de Massas em Tandem , Doxorrubicina/química , Albuminas
17.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398612

RESUMO

Bistorta vivipara is a medicinal plant with a long history, but there are few studies on the effects of its medicinal components and endophytic bacteria on the accumulation of secondary metabolites. Therefore, in this study, non-targeted metabolomics techniques and 16s rDNA techniques were used to study B. vivipara from different regions. A total of 1290 metabolites and 437 differential metabolites were identified from all samples. Among them, flavonoids, isoflavonoids, and benzopyrans are the main medicinal components of B. vivipara; these have potential anticancer, antiviral, and antioxidant properties, as well as potential applications for the treatment of atrial fibrillation. In addition, irigenin, an important medicinal component, was identified for the first time. The endophytic bacterial communities in the root tissues of B. vivipara from different regions were also different in composition and richness. Hierarchical clustering heat map analysis showed that Proteobacteria and Actinobacteriota bacteria significantly affected the accumulation of many medicinal components in the roots of B. vivipara.


Assuntos
Raízes de Plantas , Polygonaceae , Raízes de Plantas/microbiologia , DNA Ribossômico/genética , Polygonaceae/genética , Bactérias/genética , Proteobactérias
18.
BMC Nurs ; 23(1): 425, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918776

RESUMO

BACKGROUND: Nurses often face challenges such as inadequate welfare protection, injustice, and workplace adversity including violence, bullying, and sexual harassment. In this context, providing sufficient support to nurses is crucial for the promotion of their professional well-being. This study examines the direct and indirect effects of perceived organizational support on nurses' well-being, particularly highlighting the mediating roles of professional quality of life and the perception of decent work. METHODS: A cross-sectional survey design was employed in this study. Convenience sampling was used to survey 792 nurses from five tertiary A-grade hospitals in Shanxi Province in January 2024. Data collection tools included a custom demographic survey, the Perceived Organizational Support Scale, Professional Quality of Life Scale, Decent Work Perception Scale, and Nurse Occupational Well-being Questionnaire. Descriptive statistics, correlation analysis, and mediation effect analyses were performed. RESULTS: The findings demonstrate that perceived organizational support has a direct impact on nurses' occupational well-being (ß = 0.323, p < 0.001). Additionally, professional quality of life and the perception of decent work play chain mediating roles between perceived organizational support and nurses' well-being (ß = 0.019, BootLLCI = 0.010, BootULCI = 0.030). CONCLUSIONS: This study highlighted the importance of organizational support in enhancing nurses' well-being. Professional quality of life and decent work were key mediators. Healthcare institutions should prioritize support measures to improve nurses' well-being. Future research should explore additional mediators and mechanisms to develop effective strategies for nursing policymakers and administrators.

19.
Plant Mol Biol ; 112(1-2): 19-31, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929454

RESUMO

Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.


Assuntos
Gossypium , Proteínas de Plantas , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Pectinas , Regulação da Expressão Gênica de Plantas , Flores , Infertilidade das Plantas/genética
20.
Small ; 19(43): e2302829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356081

RESUMO

Herein, a direct-contact photocurrent-direction-switching photoelectrochemical (PEC) biosensing platform for the ultrasensitive and selective detection of soluble CD146 (sCD146) is reported for the first time via in situ formation of carbon nitride quantum dots (CN QDs)/titanium dioxide (TiO2 ) nanodiscs with the double-supported 3D DNA walking amplification. In this platform, metal organic frameworks (MOFs)-derived porous TiO2 nanodiscs exhibit excellent anodic photocurrent, whereas a single-stranded auxiliary DNA (ssDNA) as biogate is absorbed onto the TiO2 nanodiscs to block active sites. Subsequently, with the help of intermediate DNAs from target sCD146-induced double-supported 3D DNA walking signal amplification, the ssDNA can leave away from the surface of TiO2 nanodiscs due to the specific hybridization with intermediate DNAs. Afterward, the successful direct contact of CN QDs on TiO2 nanodiscs by porosity and electrostatic adsorption, leads to the effective photocurrent-direction switching from anodic to cathodic photocurrent. Based on direct-contact photocurrent-direction-switching CN QDs/TiO2 nanodiscs system and double-supported 3D DNA walking signal amplification, sCD146 is detected sensitively with a wide linear range (10 fg mL-1 to 5 ng mL-1 ) and a low limit of detection (2.1 fg mL-1 ). Also, the environmentally friendly and direct-contact photocurrent-direction-switching PEC biosensor has an application prospect for cancer biomarker detection.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Pontos Quânticos/química , Técnicas Eletroquímicas/métodos , Titânio/química , DNA , DNA de Cadeia Simples , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa