Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021237

RESUMO

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Assuntos
Afídeos , Densovirus , Nicotiana , Doenças das Plantas , Afídeos/virologia , Afídeos/fisiologia , Animais , Nicotiana/virologia , Nicotiana/parasitologia , Doenças das Plantas/virologia , Densovirus/fisiologia , Densovirus/genética , Potyvirus/fisiologia , Potyvirus/patogenicidade , Sesquiterpenos/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade
2.
Fish Physiol Biochem ; 50(2): 687-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285408

RESUMO

Skeletal muscle is the mainly edible part of fish. Eicosapentaenoic acid (EPA) is a crucial nutrient for fish. This study investigated the effect of EPA on the muscle development of grass carp along with the potential molecular mechanisms in vivo and in vitro. Muscle cells treated with 50 µM EPA in vitro showed the elevated proliferation, and the expression of mammalian target of rapamycin (mTOR) signaling pathway-related genes was upregulated (P < 0.05). In vivo experiments, 270 grass carp (27.92 g) were fed with one of the three experimental diets for 56 days: control diet (CN), 0.3% EPA-supplement diet (EPA), and the diet supplemented with 0.3% EPA and 30 mg/kg rapamycin (EPA + Rap). Fish weight gain rate (WGR) was improved in EPA group (P < 0.05). There was no difference in the viscerosomatic index (VSI) and body height (BH) among all groups (P > 0.05), whereas the carcass ratio (CR) and body length in the EPA group were obviously higher than those of other groups (P < 0.05), indicating that the increase of WGR was due to muscle growth. In addition, both muscle fiber density and muscle crude protein also increased in EPA group (P < 0.05). The principal component analysis showed that total weight of muscle amino acid in EPA group ranked first. Dietary EPA also increased protein levels of the total mTOR, S6k1, Myhc, Myog, and Myod in muscle (P < 0.05). In conclusion, EPA promoted the muscle development and nutritive value via activating the mTOR signaling pathway.


Assuntos
Carpas , Ácido Eicosapentaenoico , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análise , Carpas/metabolismo , Transdução de Sinais , Dieta , Músculo Esquelético/metabolismo , Proteínas Alimentares , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Desenvolvimento Muscular , Valor Nutritivo , Ração Animal/análise , Proteínas de Peixes/genética , Mamíferos/metabolismo
3.
Sci Rep ; 14(1): 17069, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048677

RESUMO

The epithelial-mesenchymal transition (EMT) is a genetic reprogramming that tumor cells utilize for metastasis. Epsin-3 (EPN3) is an endocytic adapter protein involved in clathrin-mediated endocytosis and had been previously linked to EMT in breast cancer and glioma metastasis. In this study, identified the role of epsin-3 in lung adenocarcinoma and metastasis and epsin-3 levels identified using an expression profile analysis of patient data indicated the protein was abnormally overexpressed in lung adenocarcinoma patients and this was directly linked to disease severity. Gene knockdowns of EPN3 in human adenocarcinoma cell line A549 and the non-small cell lung carcinoma cell line H1299 decreased the levels of mesenchymal markers, including vimentin (VIM), N-cadherin (NCAD) and embryonic transcription factors like zinc finger E-box binding homeobox 1(ZEB1), snail, and the key molecules of Wnt pathway such as ß-catenin and resulted in increased expression of the epithelial marker E-cadherin (ECAD). Our data links EPN3 to the EMT process in lung cancer and inhibition of its expression reduced the metastatic and invasive ability of lung adenocarcinoma cells by inhibiting the EMT process.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Adenocarcinoma de Pulmão , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Invasividade Neoplásica , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Células A549 , Caderinas/metabolismo , Caderinas/genética , Masculino , Via de Sinalização Wnt , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/genética , Pessoa de Meia-Idade , beta Catenina/metabolismo
4.
Stem Cell Res Ther ; 15(1): 107, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637896

RESUMO

BACKGROUND: The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS: A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS: We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS: For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.


Assuntos
Serotonina , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Neurônios , Genes Reporter
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa