Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atmos Res ; 249: 105328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33100451

RESUMO

With outbreak of the novel coronavirus disease (COVID-19), immediate prevention and control actions were imposed in China. Here, we conducted a timely investigation on the changes of air quality, associated health burden and economic loss during the COVID-19 pandemic (January 1 to May 2, 2020). We found an overall improvement of air quality by analyzing data from 31 provincial cities, due to varying degrees of NO2, PM2.5, PM10 and CO reductions outweighing the significant O3 increase. Such improvement corresponds to a total avoided premature mortality of 9410 (7273-11,144) in the 31 cities by comparing the health burdens between 2019 and 2020. NO2 reduction was the largest contributor (55%) to this health benefit, far exceeding PM2.5 (10.9%) and PM10 (23.9%). O3 instead was the only negative factor among six pollutants. The period with the largest daily avoided deaths was rather not the period with strict lockdown but that during February 25 to March 31, due to largest reduction of NO2 and smallest increase of O3. Southwest, Central and East China were regions with relatively high daily avoided deaths, while for some cities in Northeast China, the air pollution was even worse, therefore could cause more deaths than 2019. Correspondingly, the avoided health economic loss attributable to air quality improvement was 19.4 (15.0-23.0) billion. Its distribution was generally similar to results of health burden, except that due to regional differences in willingness to pay to reduce risks of premature deaths, East China became the region with largest daily avoided economic loss. Our results here quantitatively assess the effects of short-term control measures on changes of air quality as well as its associated health and economic burden, and such information is beneficial to future air pollution control.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33801823

RESUMO

Ambient fine particles (PM2.5) have been shown to have adverse health effects by inducing oxidative stress. Here, dithiothreitol (DTT)-based oxidative potential (OP) was used to assess the capacity of oxidative stress caused by PM2.5. In this study, PM2.5 samples were collected in the Nanjing area in 2016, and physicochemical properties and DTT activity were investigated. The annual mean PM2.5 mass concentration was 73 µg m-3 and greatly varied among seasons (spring > winter > summer > autumn). Three fluorescent substances were identified by the excitation-emission matrix (EEM) spectrum. The annual mean mass-normalized DTT activity (DTTm; 0.02 nmol min-1 µg-1) was similar to that documented for cities of some developed countries. The annual mean volume-normalized DTT activity (DTTv) showed a relatively high value of 1.16 nmol min-1 m-3, and the seasonal mean DTTv was highest in winter, followed by spring, autumn, and summer, whose pattern is different from PM2.5 mass concentration. Correlation and multiple linear regression analysis suggested that transition metals may have a greater effect on OP in autumn and winter, humic-like substances and UV absorbing aromatic substances may have a strong effect on OP in spring and summer. Generally, this study enhances our understanding of seasonal variation in health effects associated with PM2.5.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Cidades , Monitoramento Ambiental , Estresse Oxidativo , Material Particulado/análise , Material Particulado/toxicidade , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa