Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Plant Cell ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038209

RESUMO

The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA-motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2 and BLH4, that functions in modulating the de-methylesterification of homogalacturonan in seed coat mucilage.

2.
PLoS Biol ; 22(8): e3002615, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159282

RESUMO

Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.

3.
Circ Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082138

RESUMO

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.

4.
PLoS Comput Biol ; 20(6): e1011882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838038

RESUMO

In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.


Assuntos
Redes Reguladoras de Genes , Modelos Biológicos , Animais , Redes Reguladoras de Genes/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Divisão Celular/fisiologia , Divisão Celular/genética , Biologia Computacional , Desenvolvimento Embrionário/fisiologia , Desenvolvimento Embrionário/genética , Linhagem da Célula , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento/genética
5.
Neuroimage ; 291: 120579, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537766

RESUMO

Very preterm (VPT) infants (born at less than 32 weeks gestational age) are at high risk for various adverse neurodevelopmental deficits. Unfortunately, most of these deficits cannot be accurately diagnosed until the age of 2-5 years old. Given the benefits of early interventions, accurate diagnosis and prediction soon after birth are urgently needed for VPT infants. Previous studies have applied deep learning models to learn the brain structural connectome (SC) to predict neurodevelopmental deficits in the preterm population. However, none of these models are specifically designed for graph-structured data, and thus may potentially miss certain topological information conveyed in the brain SC. In this study, we aim to develop deep learning models to learn the SC acquired at term-equivalent age for early prediction of neurodevelopmental deficits at 2 years corrected age in VPT infants. We directly treated the brain SC as a graph, and applied graph convolutional network (GCN) models to capture complex topological information of the SC. In addition, we applied the supervised contrastive learning (SCL) technique to mitigate the effects of the data scarcity problem, and enable robust training of GCN models. We hypothesize that SCL will enhance GCN models for early prediction of neurodevelopmental deficits in VPT infants using the SC. We used a regional prospective cohort of ∼280 VPT infants who underwent MRI examinations at term-equivalent age from the Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS). These VPT infants completed neurodevelopmental assessment at 2 years corrected age to evaluate cognition, language, and motor skills. Using the SCL technique, the GCN model achieved mean areas under the receiver operating characteristic curve (AUCs) in the range of 0.72∼0.75 for predicting three neurodevelopmental deficits, outperforming several competing models. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks.


Assuntos
Conectoma , Recém-Nascido Prematuro , Lactente , Recém-Nascido , Humanos , Pré-Escolar , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Recém-Nascido de muito Baixo Peso
6.
BMC Plant Biol ; 24(1): 230, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561687

RESUMO

BACKGROUND: Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS: Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS: The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.


Assuntos
Resposta ao Choque Frio , Dendrobium , Resposta ao Choque Frio/genética , Dendrobium/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872084

RESUMO

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana , Tricomas , Tricomas/genética , Tricomas/metabolismo , Tricomas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell Immunol ; 399-400: 104827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733699

RESUMO

The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.


Assuntos
Antígenos de Neoplasias , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/imunologia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Epitopos de Linfócito T/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Epitopos/imunologia
9.
Opt Express ; 32(9): 16362-16370, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859265

RESUMO

Particle manipulation through the transfer of light or sound momentum has emerged as a powerful technique with immense potential in various fields, including cell biology, microparticle assembly, and lab-on-chip technology. Here, we present a novel method called Programmable Photoacoustic Manipulation (PPAM) of microparticles in liquid, which enables rapid and precise arrangement and controllable transport of numerous silica particles in water. Our approach leverages the modulation of pulsed laser using digital micromirror devices (DMD) to generate localized Lamb waves in a stainless steel membrane and acoustic waves in water. The particles undergo a mechanical force of about several µN due to membrane vibrations and an acoustic radiation force of about tens of nN from the surrounding water. Consequently, this approach surpasses the efficiency of optical tweezers by effectively countering the viscous drag imposed by water and can be used to move thousands of particles on the membrane. The high power of the pulsed laser and the programmability of the DMD enhance the flexibility in particle manipulation. By integrating the benefits of optical and acoustic manipulation, this technique holds great promise for advancing large-scale manipulation, cell assembly, and drug delivery.

10.
Cancer Cell Int ; 24(1): 64, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336680

RESUMO

BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.

11.
Biopolymers ; : e23605, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864249

RESUMO

Chemotherapy plays a crucial role in the clinical treatment of triple-negative breast cancer (TNBC), but drug resistance limits its clinical application. The active ingredients of Chaihu Shugan Powder (CSP; Bupleurum Liver-Coursing Powder), quercetin and luteolin, both belong to flavonoid compounds and have significant anti-tumor potential, which can promote chemotherapy sensitivity. However, the correlation between the two and TNBC paclitaxel (PTX) chemotherapy sensitivity is unknown. We collected herbal components of CSP from the TCMSP database, and screened effective molecules and corresponding targets. STRING database was utilized to construct a protein-protein interaction network combining effective molecules and target genes. The top 50 nodes ranked by affinity were chosen for subsequent functional analysis, and the drug-active ingredient-gene interaction network was established using Cytoscape software. Molecular docking was used to determine the small molecules that target TNBC PTX resistance. The "clusterProfiler" package was utilized for GO and KEGG enrichment analyses on the top 50 genes to determine the pathways affected by CSP. Cell counting and colony formation assays evaluated cell viability, IC50 values, and proliferation capacity. Flow cytometry tested PTX intracellular accumulation. Western blot assayed the expression of TNF pathway-related proteins. Active ingredients of CSP, quercetin and luteolin, could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization. Quercetin and luteolin repressed the TNF signaling pathway and promoted PTX chemotherapy sensitization. Quercetin and luteolin could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization through the TNF signaling pathway. Therefore, the use of quercetin and luteolin plus PTX treatment provides a prospective strategy for TNBC treatment.

12.
Langmuir ; 40(31): 16400-16418, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39049446

RESUMO

This study describes the preparation of Ni-P-Cr3C2 composite coatings using pulsed electrodeposition, with varying Cr3C2 concentrations (0, 1, 2, 3, 4, and 5 g/L). Subsequently, the Ni-P-Cr3C2 composite coatings are heat-treated at different temperatures (200, 400, and 600 °C) using the characteristic of Cr3C2 oxidizing to Cr2O3 at high temperatures. The Ni-P coatings, Ni-P-Cr3C2 composite coatings, and heat-treated-state Ni-P-Cr3C2 composite coatings are compared and discussed. The results show that the hardness, wear resistance, and corrosion resistance of the composite coatings are optimized when the Cr3C2 content is 3 g/L and the heat-treatment temperature is 400 °C. This is due to the presence of oxides such as Cr2O3 on the surface of the composite coatings after heat treatment at 400 °C. By efficiently enhancing the coating's densification to the substrate, these oxides raise the composite coating's resistance to corrosion and wear. The Ni-P-Cr3C2 composite coating in its heat-treated makeup at 400 °C is found to have long-term corrosion resistance in the 3.5 wt % NaCl solution immersion test. This study provides a new idea in the field of corrosion.

13.
Inorg Chem ; 63(1): 441-450, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38149999

RESUMO

New amine-amino-bis(phenolate) ligands (H2LtBu and H2LCl) with a cyclic tertiary amine (pyrrolidine) as a side arm and tBu or Cl group on the phenolate ring have been prepared. The alkane elimination reaction between these free ligands and rare-earth tris(alkyl)s Ln(CH2SiMe3)3(THF)2 afforded the corresponding silylalkyl complexes LtBuLnCH2SiMe3(THF) (Ln = Y (1), Lu (2)) and LClYCH2SiMe3(THF) (3), where the solid-state structure of complex 1 was unambiguously confirmed by X-ray diffraction (XRD) analysis. These rare-earth metal complexes have been utilized as catalysts for the ring-opening polymerization (ROP) of biobased δ-caprolactone (δCL), either in the absence or presence of alcohols, to give poly(δ-caprolactone) (PδCL) with controlled molecular weight and narrow distribution (D < 1.2). The polymerization kinetics of δCL in toluene with yttrium complexes 1 and 3 were investigated. Oligomers prepared with complex 3 alone and the 3/PhCHMeOH binary catalyst system were well characterized with 1H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). Moreover, chemical recycling of the resultant PδCL was achieved with high yield in a solution at ambient temperature (>92%) or in bulk at 130 °C (>82%) by using commercial KOtBu as a promotor.

14.
Arch Virol ; 169(5): 96, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619633

RESUMO

In recent years, the pig industry in Xinjiang, China, has been severely impacted by outbreaks of porcine epidemic diarrhea (PED), despite vaccination efforts. In this study, we investigated the genetic characteristics of currently prevalent porcine epidemic diarrhea virus (PEDV) strains in the region. We collected 548 samples from animals with suspected PED on large-scale pig farms in Xinjiang. Of these, 258 tested positive for PEDV by RT-PCR, yielding an overall positivity rate of 47.08%. S1 gene sequencing and phylogenetic analysis were conducted on 23 randomly selected RT-PCR-positive samples. Three endemic strains of PEDV (PEDV/CH/XU/2020, PEDV/CH/XK/2020, and PEDV/CH/XA/2020) were isolated, and their complete genome sequences were analyzed for evidence of genetic recombination. Sequence comparison of the S gene indicated significant variations in the S1 gene of the Xinjiang strains compared to the vaccine strains CV777, AJ1102, and LWL, with 90.2%-98.5% nucleotide sequence identity. Notably, both the N-terminal and C-terminal domains of the S protein showed significant variation. Genetic evolutionary analysis identified the GIIa subtype as the dominant genotype among the epidemic strains in Xinjiang. Recombination analysis revealed inter-subtype recombination events in the PEDV/CH/XK/2020 and XJ1904-34 strains. These findings highlight the extensive genetic variation in the predominant GIIa genotype of PEDV in Xinjiang, which does not match the genotype of the currently used vaccine strains. These data may guide further efforts toward the development of effective vaccines for the control of PED.


Assuntos
Disenteria , Vírus da Diarreia Epidêmica Suína , Vacinas , Animais , Suínos , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Evolução Biológica , China/epidemiologia
15.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469775

RESUMO

BACKGROUND: The aim of this study was to verify the analytical performance of the UD90DT electrochemiluminescence immunoassay system (the UD90DT system) for measuring high-sensitivity cardiac troponin T (hs-cTnT). METHODS: According to the Clinical and Laboratory Standards Institute guidelines, the imprecision, linearity, reference interval, limit of blank (LoB), limit of detection (LoD), and functional sensitivity (FS) of hs-cTnT using the UD90DT system were verified. The trueness was validated using the Proficiency Testing (PT) materials. RESULTS: The within-run and between-run coefficients of variations (CVs) of two hs-cTnT levels were 7.2% and 1.5%, and 7.1% and 2.6%, respectively. The biases of the PT samples (n = 6) all fell within the allowable total error. The linearity satisfied the requirements, with a slope of 0.9963 and an R12 value of 0.9998. The hs-cTnT levels of the healthy volunteers (n = 20) ranged from 3.0 ng/L to 7.7 ng/L. All blank calibrator measurements (n = 20) fell within the LoD claim, and none of the samples (n = 25) had a LoB value ≤ 3.0 ng/L. The FS was 5.3 ng/L. Furthermore, a good correlation between the UD90DT system and the Cobas e 601 module was observed for hs-cTnT. CONCLUSIONS: The analytical performance of hs-cTnT using the UD90DT system is acceptable and satisfies clinical needs.


Assuntos
Testes Imunológicos , Troponina T , Humanos , Limite de Detecção , Imunoensaio , Biomarcadores
16.
Biochem Genet ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526709

RESUMO

Pheochromocytoma/paraganglioma (PGPG) is a rare neuroendocrine tumor. Amino acid metabolism is crucial for energy production, redox balance, and metabolic pathways in tumor cell proliferation. This study aimed to build a risk model using amino acid metabolism-related genes, enhancing PGPG diagnosis and treatment decisions. We analyzed RNA-sequencing data from the PCPG cohort in the GEO dataset as our training set and validated our findings using the TCGA dataset and an additional clinical cohort. WGCNA and LASSO were utilized to identify hub genes and develop risk prediction models. The single-sample gene set enrichment analysis, MCPCOUNTER, and ESTIMATE algorithm calculated the relationship between amino acid metabolism and immune cell infiltration in PCPG. The TIDE algorithm predicted the immunotherapy efficacy for PCPG patients. The analysis identified 292 genes with differential expression, which are involved in amino acid metabolism and immune pathways. Six genes (DDC, SYT11, GCLM, PSMB7, TYRO3, AGMAT) were identified as crucial for the risk prediction model. Patients with a high-risk profile demonstrated reduced immune infiltration but potentially higher benefits from immunotherapy. Notably, DDC and SYT11 showed strong diagnostic and prognostic potential. Validation through quantitative Real-Time Polymerase Chain Reaction and immunohistochemistry confirmed their differential expression, underscoring their significance in PCPG diagnosis and in predicting immunotherapy response. This study's integration of amino acid metabolism-related genes into a risk prediction model offers critical clinical insights for PCPG risk stratification, potential immunotherapy responses, drug development, and treatment planning, marking a significant step forward in the management of this complex condition.

17.
Biochem Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753026

RESUMO

The Stat (signal transducer and activator of transcription) gene family plays a vital role in regulating immunity and the processes of cellular proliferation, differentiation, and apoptosis across diverse organisms. Although the functions of Stat genes in immunity have been extensively documented in many mammals, limited data are available for reptiles. We used phylogenetic analysis to identify eight putative members of the Stat family (Stat1-1, Stat1-2, Stat2, Stat3, Stat4, Stat5b, Stat6-1, and Stat6-2) within the genome of M. reevesii, a freshwater turtle found in East Asia. Sequence analysis showed that the Stat genes contain four conserved structural domains protein interaction domain, coiled-coil domain, DNA-binding domain, and Src homology domain 2. In addition, Stat1, Stat2, and Stat6 contain TAZ2bind, Apolipo_F, and TALPID3 structural domains. The mRNA levels of Stat genes were upregulated in spleen tissues at 4, 8, 12, and 16 h after administration of lipopolysaccharide, a potent activator of the immune system. Stat5b expression at 12-h LPS post-injection exhibited the most substantial difference from the control. The expression of Stat5b in spleen tissue cellular was verified by immunofluorescence. These results suggest that Stat5b plays a role in the immune response of M. reevesii and may prove to be as a positive marker of an immune response in future studies.

18.
Foodborne Pathog Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625018

RESUMO

Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.

19.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473747

RESUMO

Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17ß-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 µM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.


Assuntos
Peixes , Peptídeos Semelhantes à Insulina , Animais , Filogenia , Sequência de Aminoácidos , Peixes/genética , RNA Mensageiro/genética , Expressão Gênica , Clonagem Molecular
20.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731551

RESUMO

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Assuntos
Drogas Ilícitas , Espectrometria de Massas , Esgotos , Extração em Fase Sólida , Esgotos/análise , Esgotos/química , Extração em Fase Sólida/métodos , Espectrometria de Massas/métodos , Drogas Ilícitas/análise , Poluentes Químicos da Água/análise , Águas Residuárias/análise , Águas Residuárias/química , Nanopartículas de Magnetita/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa