Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38248069

RESUMO

Automatically segmenting specific tissues or structures from medical images is a straightforward task for deep learning models. However, identifying a few specific objects from a group of similar targets can be a challenging task. This study focuses on the segmentation of certain specific intervertebral discs from lateral spine images acquired from an MRI scanner. In this research, an approach is proposed that utilizes MultiResUNet models and employs saliency maps for target intervertebral disc segmentation. First, a sub-image cropping method is used to separate the target discs. This method uses MultiResUNet to predict the saliency maps of target discs and crop sub-images for easier segmentation. Then, MultiResUNet is used to segment the target discs in these sub-images. The distance maps of the segmented discs are then calculated and combined with their original image for data augmentation to predict the remaining target discs. The training set and test set use 2674 and 308 MRI images, respectively. Experimental results demonstrate that the proposed method significantly enhances segmentation accuracy to about 98%. The performance of this approach highlights its effectiveness in segmenting specific intervertebral discs from closely similar discs.

2.
J Clin Med ; 10(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34682885

RESUMO

The automatic segmentation of intervertebral discs from medical images is an important task for an intelligent clinical system. In this study, a deep learning model based on the MultiResUNet model for the automatic segmentation of specific intervertebral discs is presented. MultiResUNet can easily segment all intervertebral discs in MRI images; however, when only certain specific intervertebral discs need to be segmented, problems with segmentation errors, misalignment, and noise occur. In order to solve these problems, a two-stage MultiResUNet model is proposed. Connected-component labeling, automatic cropping, and distance transform are used in the proposed method. The experimental results show that the segmentation errors and misalignments of specific intervertebral discs are greatly reduced, and the segmentation accuracy is increased to about 94%. The performance of the proposed method proves its usefulness for the automatic segmentation of specific intervertebral discs over other deep learning models, such as the U-Net, CNN-based, Attention U-Net, and MultiResUNet models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa