Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuroimage ; 297: 120653, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795798

RESUMO

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7 % and 4.94 %, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5 % of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of apparent diffusivity in pCSF was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.


Assuntos
Líquido Cefalorraquidiano , Imagem de Tensor de Difusão , Sistema Glinfático , Humanos , Adulto , Feminino , Masculino , Adulto Jovem , Imagem de Tensor de Difusão/métodos , Adolescente , Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Fluxo Pulsátil/fisiologia , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/fisiologia
2.
J Am Chem Soc ; 141(45): 18136-18141, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31589435

RESUMO

The selective and temporal control of protein activity in living cells provides a powerful tool to manipulate cellular function and to develop pro-protein therapeutics (PPT) for targeted therapy. In this work, we reported a facile but general chemical approach to design PPT by modulating protein activity in response to endogenous enzyme of disease cells, and its potential for targeted cancer therapy. We demonstrated that the chemical modification of a protein with quinone propionic acid (QPN), a ligand that could be reduced by tumor-cell-specific NAD(P)H dehydrogenase [quinone] 1 (NQO1), was reversible in the presence of NQO1. Importantly, the QPN-modified cytochrome c (Cyt c-QPN) and ribonuclease A (RNase A-QPN) showed NQO1-regulated protein activity in a highly selective manner. Furthermore, the intracellular delivery of RNase A-QPN using a novel type of lipid-based nanoparticles, and subsequent protein activation by cellular NQO1, selectively inhibit cancer cell growth in vitro and effectively suppress tumor growth in vivo. We believe that our approach increases the number of potentially useful chemical tools for reversibly controlling the structure and function of protein using a disease-cell-specific enzyme, opening opportunities in the study of dynamic biological processes and developing precise protein therapeutics.


Assuntos
Antineoplásicos/farmacologia , Citocromos c/química , Proteínas de Fluorescência Verde/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Pró-Fármacos/farmacologia , Ribonuclease Pancreático/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/química , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Propionatos/química , Propionatos/metabolismo , Quinonas/química , Quinonas/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo
3.
ACS Appl Mater Interfaces ; 14(15): 17022-17031, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380773

RESUMO

Corneal neovascularization (CNV) is a common disease that affects the vision ability of more than 1 million people annually. Small interfering RNA (siRNA) delivery nanoparticle platforms are a promising therapeutic modality for CNV treatment. However, the efficient delivery of siRNA into cells and the effective release of siRNA from delivery vehicles in a particular cell type challenge effective RNAi clinical application for CNV suppression. This study reports the design of a novel reactive oxygen species (ROS)-responsive lipid nanoparticle for siRNA delivery into corneal lesions for enhanced RNAi as a potential CNV treatment. We demonstrated that lipid nanoparticles could efficiently deliver siRNA into human umbilical vein endothelial cells and release siRNA for enhanced gene silencing by using the upregulated ROS of CNV to promote lipid nanoparticle degradation. Moreover, the subconjunctival injection of siRNA nanocomplexes into corneal lesions effectively knocked down vascular endothelial growth factor expression and suppressed CNV formation in an alkali burn model. Thus, we believe that the strategy of using ROS-responsive lipid nanoparticles for enhanced RNAi in CNV could be further extended to a promising clinical therapeutic approach to attenuate CNV formation.


Assuntos
Neovascularização da Córnea , Nanopartículas , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipossomos , Oxigênio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Chem Commun (Camb) ; 56(47): 6368-6371, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32390035

RESUMO

The real-time and reversible detection of cellular glutathione and oxidative stress challenges the study of the redox homeostasis of biological systems. We report herein a modular approach to design the Michael addition between glutathione and coumarin derivatives for fluorescence imaging of the reversible and dynamic change of oxidative stress in living cells and the rat brain.


Assuntos
Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/química , Imagem Óptica , Fótons , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Glutationa/análise , Glutationa/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Estresse Oxidativo , Ratos , Espectrometria de Fluorescência , Fatores de Tempo
5.
Chem Commun (Camb) ; 55(56): 8170-8173, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31241120

RESUMO

Lipid-complexed small interfering RNA (siRNA) nanoparticles are promising gene regulation materials with excellent genetic, but little cellular, selectivity. Herein, we report a chemical strategy to enhance the gene silencing selectivity of these nanoparticles against cancer cells through the covalent integration of a reactive oxygen species (ROS)-degradable thioketal into the lipid nanoparticles. These lipid nanoparticles can efficiently deliver siRNA into cells, and selectively silence cancer cell gene expression in response to the high levels of intracellular ROS in cancer cells.


Assuntos
Inativação Gênica , Lipídeos/química , Nanopartículas/química , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa