Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 626(8000): 765-771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383627

RESUMO

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

2.
Nat Mater ; 22(3): 289-304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36864164

RESUMO

Persistent luminescent phosphors can store light energy in advance and release it with a long-lasting afterglow emission. With their ability to eliminate in situ excitation and store energy for long periods of time, they are promising for broad applications, including background-free bioimaging, high-resolution radiography, conformal electronics imaging and multilevel encryption. This Review provides an overview of various strategies for trap manipulation in persistent luminescent nanomaterials. We highlight key examples in the design and preparation of nanomaterials with tunable persistent luminescence, particularly in the near-infrared range. In subsequent sections, we cover the most current developments and trends concerning the use of these nanomaterials in biological applications. Moreover, we assess their advantages and disadvantages compared with conventional luminescent materials for biological applications. We also discuss future research directions and challenges, such as insufficient brightness at the single-particle level, and possible solutions to these challenges.

3.
Nature ; 561(7721): 88-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150772

RESUMO

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

4.
Nano Lett ; 23(15): 7221-7227, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37338434

RESUMO

Vacancies pose a major challenge in the production of high-quality crystals, particularly at the nanoscale. To address this problem, we report a convenient strategy that involves volumetric lattice reconstruction and dynamic metal complex docking to produce ultrasmall (10 nm) and bright core-shell upconversion nanoparticles (UCNPs). This strategy involves the formation of lanthanide ion-oleic acid complexes during postannealing in solution, which effectively removes vacancies in nanocrystals. The removal of vacancies restricts the diffusion of lanthanide sensitizers and emitters within the core, thus minimizing surface quenching. Our volumetric lattice reconstruction strategy provides fundamental insights into lattice engineering and presents a general strategy for purifying functional nanocrystals for applications in fields such as single-molecule tracking, quantum optics, energy conversion, and others.

5.
Nano Lett ; 21(7): 3044-3051, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33687219

RESUMO

Efficient generation of anti-Stokes emission within nanometric volumes enables the design of ultracompact, miniaturized photonic devices for a host of applications. Many subwavelength crystals, such as metal nanoparticles and two-dimensional layered semiconductors, have been coupled with plasmonic nanostructures for augmented anti-Stokes luminescence through multiple-harmonic generation. However, their upconversion process remains inefficient due to their intrinsic low absorption coefficients. Here, we demonstrate on-chip, site-specific integration of lanthanide-activated nanocrystals within gold nanotrenches of sub-25 nm gaps via bottom-up self-assembly. Coupling of upconversion nanoparticles to subwavelength gap-plasmon modes boosts 3.7-fold spontaneous emission rates and enhances upconversion by a factor of 100 000. Numerical investigations reveal that the gap-mode nanocavity confines incident excitation radiation into nanometric photonic hotspots with extremely high field intensity, accelerating multiphoton upconversion processes. The ability to design lateral gap-plasmon modes for enhanced frequency conversion may hold the potential to develop on-chip, background-free molecular sensors and low-threshold upconversion lasers.

6.
Nano Lett ; 21(1): 778-784, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33301328

RESUMO

Reprogrammed glucose metabolism is vital for cancer cells, but aspartate, an intermediate metabolic product, is the limiting factor for cancer cell proliferation. However, due to the complexity of metabolic pathways, it remains unclear whether glucose is the primary source of endogenous aspartate. Here, we report the design of an innovative molecular deactivator, based on a multifunctional upconversion nanoprobe, to explore the link between glucose and aspartate. This molecular deactivator mainly works in the acidic, hypoxic tumor microenvironment and deactivates multiple types of glucose transporters on cancer cell membranes upon illumination at 980 nm. Cancer cell proliferation in vivo is strongly inhibited by blocking glucose transporters. Our experimental data confirm that the cellular synthesis of aspartate for tumor growth is glucose-dependent. This work also demonstrates the untapped potential of molecularly engineered upconversion nanoprobes for discovering hidden metabolic pathways and improving therapeutic efficacy of conventional antitumor drugs.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Ácido Aspártico/farmacologia , Proliferação de Células/genética , Glucose , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
7.
Acc Chem Res ; 52(1): 228-236, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30557000

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) exhibit unique optical characteristics, including a large anti-Stokes shift, a long luminescence lifetime, sharp emission bands, and high photostability. These virtues make UCNPs highly useful in many emerging applications such as biolabeling, security, multicolor displays, and optogenetics. Despite the enticing prospects of UCNPs, their practical utility is greatly hindered by the low efficiency of the conversion from near-infrared (NIR) excitation to visible emission. In a typical nanosystem codoped with sensitizers and activators, upconversion processes occur through NIR light sensitization, energy transfer from sensitizers to activators, sequential energy population at the excited states of the activators, and eventually the release of higher-energy photons. In fact, in the upconversion nanosystem, each step in the energy flux, including NIR energy injection, energy transfer and migration, and energy dissipation, has a decisive effect on the resulting luminescence intensity. Important in-depth studies have been conducted in pursuit of brighter UCNPs. Specifically, lanthanide ions possessing larger absorption cross sections (Nd3+) or organic dye molecules have been chosen as NIR light sensitizers to improve the light harvesting ability of upconversion nanostructures. The doping concentration and spatial distribution of lanthanide ions are strictly managed to mitigate detrimental energy cross-talk processes. The surfaces of UCNPs are passivated with epitaxially grown layers to block surface quenching. Therefore, rational design of energy flux manipulation, through control of excitation energy collection, transmission, and release in a three-dimensional nanospace of UCNPs, is crucial in constructing nanosystems with high upconversion efficiencies. In this Account, from an energy flux manipulation perspective, we attempt to provide an overview of general and emerging strategies for the design of efficient lanthanide-mediated photon upconversion nanosystems. With the significant progress made over the past several years, we are now able to design a series of upconversion nanoplatforms with efficient NIR light harvesting ability, sufficient energy transmission channels, and low levels of luminescence quenching at the particle's surface. In addition to providing a deep understanding of the underlying mechanism of energy flux, these discoveries will guide the development of upconversion nanosystems with significantly improved performance. The key aspects of this Account of energy flux manipulation in upconversion nanosystems mainly include the management of NIR photon energy injection, the optimization of efficient energy transfer pathways, and the minimization of energy flux leakage. Future challenges and opportunities for the development of efficient upconversion nanosystems are also discussed.

8.
Angew Chem Int Ed Engl ; 59(2): 746-751, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31664779

RESUMO

Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub-2 nm size and near-unity quantum yield are presented. The spin-orbit coupling (SOC) of heavy-atom-rich organic fluorophores is mitigated through a silane-molecule-mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long-term photostability. Taking advantage of the low-power excitation (0.5 µW), prolonged singlet-state lifetime, and negligible depletion-induced re-excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm-2 ), and ultra-high lateral resolution (ca. λem /28).


Assuntos
Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Compostos de Organossilício/química
9.
Angew Chem Int Ed Engl ; 59(2): 833-838, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31573739

RESUMO

Interpenetration in metal-organic frameworks (MOFs) is an intriguing phenomenon with significant impacts on their properties, and functional applications. Herein, we show that a 7-fold interpenetrated MOF (1) is transformed into an 8-fold interpenetrated MOF by the loss of DMF in a single-crystal-to-single-crystal manner. This is accompanied by a giant enhancement of the second harmonic generation (SHG ca. 125 times) and two-photon photoluminescence (ca. 14 times). The strengthened π-π interaction between the individual diamondoid networks and intensified oscillator strength of the molecules aid the augment of dipole moments and boost the nonlinear optical conversion efficiency. Large positive and negative thermal expansions of 1 occur at 30-150 °C before the loss of DMF. These results offer an avenue to manipulate the NLO properties of MOFs using interpenetration and provide access to tunable single-crystal NLO devices.

10.
Angew Chem Int Ed Engl ; 56(26): 7605-7609, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28470867

RESUMO

A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.

11.
Chemistry ; 22(31): 10801-7, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27245472

RESUMO

A crystal design strategy is described that generates hexagonal-phased NaYF4 :Nd/Yb@NaYF4 :Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross-section of Nd(3+) between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd(3+) →Yb(3+) →Yb(3+) →Tm(3+) . Mechanistic investigations suggest that a cascaded two-photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep-tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980 nm excitation.


Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/química
12.
Adv Sci (Weinh) ; 11(3): e2306398, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018323

RESUMO

Precise control of exciton confinement in metal halide perovskites is critical to the development of high-performance, stable optoelectronic devices. A significant hurdle is the swift completion of ionic metathesis reactions, often within seconds, making consistent control challenging. Herein, the introduction of different steric hindrances in a Cs+ sublattice within CsYb2 F7 is reported, which effectively modulates the reaction rate of Cs+ with lead (Pb2+ ) and halide ions in solution, extending the synthesis time for perovskite nanostructures to tens of minutes. Importantly, the Cs+ sublattice provides a crystal facet-dependent preference for perovskite growth and thus exciton confinement, allowing the simultaneous occurrence of up to six emission bands of CsPbBr3 . Moreover, the rigid CsYb2 F7 nano template offers high activation energy and enhances the stability of the resulting perovskite nanostructures. This methodology provides a versatile approach to synthesizing functional heterostructures. Its robustness is demonstrated by in-situ growth of perovskite nanostructures on Cs+ -mediated metal-organic frameworks.

13.
J Phys Chem Lett ; 14(10): 2627-2634, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36888962

RESUMO

Perovskite emitters are promising materials as next-generation optical sources due to their low fabrication cost and high quantum yield. In particular, the superradiant emission from a few coherently coupled perovskite emitters can be used to produce a bright entangled photon source. Here, we report the observation of superradiance from mesoscopic (<55) CsPbBr3 perovskite emitters, which have a much smaller ensemble size than the previously reported results (>106 emitters). The superradiance is spontaneously generated by off-resonance excitation and detected by time-resolved photoluminescence and second-order photon correlation measurements. We observed a remarkable magnetic tunability of the superradiant photon bunching, indicating a magnetic field-induced decoherence process. The experimental results can be well explained using a theoretical framework based on the microscopic master equation. Our findings shed light on the superradiance mechanism in perovskite emitters and enable low-cost quantum light sources based on perovskite.

14.
Nat Commun ; 13(1): 6636, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333290

RESUMO

Nonlinear depletion of fluorescence states by stimulated emission constitutes the basis of stimulated emission depletion (STED) microscopy. Despite significant efforts over the past decade, achieving super-resolution at low saturation intensities by STED remains a major technical challenge. By harnessing the surface quenching effect in NaGdF4:Yb/Tm nanocrystals, we report here high-efficiency emission depletion through surface migration. Using a dual-beam, continuous-wave laser manipulation scheme (975-nm excitation and 730-nm de-excitation), we achieved an emission depletion efficiency of over 95% and a low saturation intensity of 18.3 kW cm-2. Emission depletion by surface migration through gadolinium sublattices enables super-resolution imaging with sub-20 nm lateral resolution. Our approach circumvents the fundamental limitation of high-intensity STED microscopy, providing autofluorescence-free, re-excitation-background-free imaging with a saturation intensity over three orders of magnitude lower than conventional fluorophores. We also demonstrated super-resolution imaging of actin filaments in Hela cells labeled with 8-nm nanoparticles. Combined with the highly photostable lanthanide luminescence, surface-migration emission depletion (SMED) could provide a powerful mechanism for low-power, super-resolution imaging or biological tracking as well as super-resolved optical sensing/writing and lithography.


Assuntos
Corantes Fluorescentes , Nanopartículas , Humanos , Microscopia de Fluorescência/métodos , Células HeLa , Luminescência
15.
Nat Commun ; 12(1): 3704, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140483

RESUMO

Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (<100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.

16.
Nat Nanotechnol ; 16(9): 975-980, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127821

RESUMO

Stimulated-emission depletion (STED) microscopy has profoundly extended our horizons to the subcellular level1-3. However, it remains challenging to perform hours-long, autofluorescence-free super-resolution imaging in near-infrared (NIR) optical windows under facile continuous-wave laser depletion at low power4,5. Here we report downshifting lanthanide nanoparticles that enable background-suppressed STED imaging in all-NIR spectral bands (λexcitation = 808 nm, λdepletion = 1,064 nm and λemission = 850-900 nm), with a lateral resolution of below 20 nm and zero photobleaching. With a quasi-four-level configuration and long-lived (τ > 100 µs) metastable states, these nanoparticles support near-unity (98.8%) luminescence suppression under 19 kW cm-2 saturation intensity. The all-NIR regime enables high-contrast deep-tissue (~50 µm) imaging with approximately 70 nm spatial resolution. These lanthanide nanoprobes promise to expand the application realm of STED microscopy and pave the way towards high-resolution time-lapse investigations of cellular processes at superior spatial and temporal dimensions.


Assuntos
Elementos da Série dos Lantanídeos/química , Lasers , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Luminescência , Imagem Óptica/métodos
17.
ACS Nano ; 14(4): 3969-3979, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32119769

RESUMO

Benefiting from their extraordinary physical properties, methylammonium lead halide perovskites (PVKs) have attracted significant attention in optoelectronics. However, the PVK-based devices suffer from low carrier mobility and high operation voltage. Here, we utilize sorted semiconducting single-walled carbon nanotubes (95% s-SWCNTs) to enhance the performance of thin-film transistors (TFTs) based on the mixed-cation perovskite (MA1-xFAx)Pb(I1-xBrx)3, enabling mixed-dimensional solution-processed electronics with high mobility (32.25 cm2/(V s)) and low voltage (∼3 V) operation. The resulting mixed-dimensional PVK/SWCNT TFTs possess ON/OFF ratios on the order of 107, enabling the fabrication of high-gain inverters.

18.
Adv Healthc Mater ; 9(2): e1900635, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31788987

RESUMO

Microneedles (MNs) permit the delivery of nucleic acids like small interfering RNA (siRNA) through the stratum corneum and subsequently into the skin tissue. However, skin penetration is only the first step in successful implementation of siRNA therapy. These delivered siRNAs need to be resistant to enzymatic degradation, enter target cells, and escape the endosome-lysosome degradation axis. To address this challenge, this article introduces a nanoparticle-embedding MN system that contains a dissolvable hyaluronic acid (HA) matrix and mesoporous silica-coated upconversion nanoparticles (UCNPs@mSiO2 ). The mesoporous silica (mSiO2 ) shell is used to load and protect siRNA while the upconversion nanoparticle (UCNP) core allows the tracking of MN skin penetration and NP diffusion through upconversion luminescence imaging or optical coherence tomography (OCT) imaging. Once inserted into the skin, the HA matrix dissolves and UCNPs@mSiO2 diffuse in the skin tissue before entering the cells for delivering the loaded genes. As a proof of concept, this system is used to deliver molecular beacons (MBs) and siRNA targeting transforming growth factor-beta type I receptor (TGF-ßRI) that is potentially used for abnormal scar treatment.


Assuntos
Nanopartículas , Agulhas , RNA Interferente Pequeno/administração & dosagem , Administração Cutânea , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Ácido Hialurônico/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , RNA Interferente Pequeno/farmacocinética , Dióxido de Silício/química , Pele/efeitos dos fármacos , Suínos , Tomografia de Coerência Óptica
19.
Adv Biosyst ; 3(10): e1900082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648719

RESUMO

Chemicals capable of producing structural and chemical changes on cells are used to treat diseases (e.g., cancer). Further development and optimization of chemotherapies require thorough knowledge of the effect of the chemical on the cellular structure and dynamics. This involves studying, in a noninvasive way, the properties of individual cells after drug administration. Intracellular viscosity is affected by chemical treatments and it can be reliably used to monitor chemotherapies at the cellular level. Here, cancer cell monitoring during chemotherapeutic treatments is demonstrated using intracellular allocated upconverting nanorockers. A simple analysis of the polarized visible emission of a single particle provides a real-time readout of its rocking dynamics that are directly correlated to the cytoplasmic viscosity. Numerical simulations and immunodetection are used to correlate the measured intracellular viscosity alterations to the changes produced in the cytoskeleton of cancer cells by anticancer drugs (colchicine and Taxol). This study evidences the possibility of monitoring cellular properties under an external chemical stimulus for the study and development of new treatments. Moreover, it provides the biomedical community with new tools to study intracellular dynamics and cell functioning.


Assuntos
Antineoplásicos , Citoplasma/efeitos dos fármacos , Monitoramento de Medicamentos/métodos , Nanoestruturas , Viscosidade/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Citoesqueleto/efeitos dos fármacos , Células HeLa , Humanos , Microscopia de Fluorescência , Nanoestruturas/química
20.
Nat Nanotechnol ; 14(12): 1110-1115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659273

RESUMO

The generation of anti-Stokes emission through lanthanide-doped upconversion nanoparticles is of great importance for technological applications in energy harvesting, bioimaging and optical cryptography1-3. However, the weak absorption and long radiative lifetimes of upconversion nanoparticles may significantly limit their use in imaging and labelling applications in which a fast spontaneous emission rate is essential4-6. Here, we report the direct observation of upconversion superburst with directional, fast and ultrabright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle's local density of state, we achieve emission amplification by four to five orders of magnitude and a 166-fold rate increase in spontaneous emission. We also demonstrate that tailoring the mode of the plasmonic cavity permits active control over the colour output of upconversion emission. These findings may benefit the future development of rapid nonlinear image scanning nanoscopy and open up the possibility of constructing high-frequency, single-photon emitters driven by telecommunication wavelengths.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa