Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864216

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

2.
Exp Cell Res ; 418(1): 113262, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714940

RESUMO

Pathological cardiac hypertrophy is an independent risk factor for the development of heart failure. Long noncoding RNAs (lncRNAs), an emerging class of non-protein-coding transcripts, are involved in regulation of multiple cardiac diseases through diverse molecular mechanism, whereas the role of cytoplasmic lncRNAs in regulating cardiac hypertrophy remains unclear. In this study, we identified a novel and functional long noncoding RNA Gm17501, which was predominantly expressed in the cytoplasm of cardiomyocytes. The expression level of lncRNA Gm17501 was altered in cardiac hypertrophy induced by pressure overload and phenylephrine treatment. Moreover, lncRNA Gm17501 expression was decreased in the heart tissue of patients with heart failure. Silencing lncRNA Gm17501 aggravated cardiac hypertrophy under pathological stress. Inhibition of lncRNA Gm17501 did not alter the expression of nearby genes but decreased mRNA level of calcium handling proteins which were involved in cardiac contraction. Therefore, the cytoplasmic lncRNA Gm17501 might protect cardiomyocytes against hypertrophy, possibly by maintaining calcium signaling pathway.


Assuntos
Insuficiência Cardíaca , RNA Longo não Codificante , Animais , Cardiomegalia/patologia , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
J Clin Invest ; 134(13)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743498

RESUMO

One of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long noncoding RNAs (lncRNAs), could provide new, more targeted therapeutic approaches to inhibit cardiac hypertrophy. Therefore, we generated mice lacking a previously identified lncRNA named CARDINAL to examine its cardiac function. We demonstrate that CARDINAL is a cardiac-specific, ribosome-associated lncRNA and show that its expression was induced in the heart upon pathological cardiac hypertrophy and that its deletion in mice exacerbated stress-induced cardiac hypertrophy and augmented protein translation. In contrast, overexpression of CARDINAL attenuated cardiac hypertrophy in vivo and in vitro and suppressed hypertrophy-induced protein translation. Mechanistically, CARDINAL interacted with developmentally regulated GTP-binding protein 1 (DRG1) and blocked its interaction with DRG family regulatory protein 1 (DFRP1); as a result, DRG1 was downregulated, thereby modulating the rate of protein translation in the heart in response to stress. This study provides evidence for the therapeutic potential of targeting cardiac-specific lncRNAs to suppress disease-induced translational changes and to treat cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia , Biossíntese de Proteínas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Humanos , Camundongos Knockout , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
4.
Neural Netw ; 168: 459-470, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806139

RESUMO

Graph Convolutional Networks (GCNs) have shown remarkable performance in processing graph-structured data by leveraging neighborhood information for node representation learning. While most GCN models assume strong homophily within the networks they handle, some models can also handle heterophilous graphs. However, the selection of neighbors participating in the node representation learning process can significantly impact these models' performance. To address this, we investigate the influence of neighbor selection on GCN performance, focusing on the analysis of edge distribution through theoretical and empirical approaches. Based on our findings, we propose a novel GCN model called Graph Convolution Network with Improved Edge Distribution (GCN-IED). GCN-IED incorporates both direct edges, which rely on local neighborhood similarity, and hidden edges, obtained by aggregating information from multi-hop neighbors. We extensively evaluate GCN-IED on diverse graph benchmark datasets and observe its superior performance compared to other state-of-the-art GCN methods on heterophilous datasets. Our GCN-IED model, which considers the role of neighbors and optimizes edge distribution, provides valuable insights for enhancing graph representation learning and achieving superior performance on heterophilous graphs.


Assuntos
Benchmarking , Aprendizagem
5.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37293078

RESUMO

Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.

6.
J Am Heart Assoc ; 12(24): e030409, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084710

RESUMO

BACKGROUND: Elevated blood pressure (BP) is reportedly associated with an increased risk of atrial fibrillation (AF). However, the association between cumulative BP exposure in midlife and incident AF in mid-to-late life remains unclear. METHODS AND RESULTS: Participants enrolled in the ARIC (Atherosclerosis Risk in Communities) study with 4 consecutive BP measurements and no prevalent AF at baseline were included. Cumulative BP was calculated as the area under the curve from visit 1 to visit 4. Incident AF was identified by study visit ECGs, hospital discharge codes, or death certificates. A total of 9892 participants were included (44.6% men and mean age 62.9±5.7 years at visit 4) with 1550 (15.7%) individuals who developed new-onset AF during an average follow-up of 15.4 years. The incidence rates of AF per 1000 person-years across the 4 quartiles of cumulative systolic BP were 7.9, 9.2, 12.5, and 16.9, respectively. After multivariable adjustment, the hazard ratios for incident AF among participants in the highest quartile of cumulative systolic BP, pulse pressure, and mean arterial pressure were 1.48 (95% CI, 1.27-1.72), 1.81 (95% CI, 1.53-2.13), and 1.22 (95% CI, 1.05-1.41), respectively, compared with those in the lowest quartile. The addition of cumulative systolic BP or pulse pressure slightly improved the ability to predict new-onset AF. CONCLUSIONS: Higher exposure to cumulative systolic BP, pulse pressure, and mean arterial pressure was significantly associated with increased risk of incident AF.


Assuntos
Aterosclerose , Fibrilação Atrial , Hipertensão , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/complicações , Pressão Sanguínea , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Incidência
7.
Hypertension ; 75(1): 79-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735087

RESUMO

Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.


Assuntos
Cardiomegalia/genética , Carnitina O-Palmitoiltransferase/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Miocárdio/metabolismo , RNA Longo não Codificante/genética , Animais , Cardiomegalia/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Sequência Conservada , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
8.
Theranostics ; 9(24): 7268-7281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695767

RESUMO

Rationale: An imbalance between protein synthesis and degradation is one of the mechanisms of cardiac hypertrophy. Increased transcription in cardiomyocytes can lead to excessive protein synthesis and cardiac hypertrophy. Maf1 is an RNA polymerase III (RNA pol III) inhibitor that plays a pivotal role in regulating transcription. However, whether Maf1 regulates of cardiac hypertrophy remains unclear. Methods: Cardiac hypertrophy was induced in vivo by thoracic aortic banding (AB) surgery. Both the in vivo and in vitro gain- and loss-of-function experiments by Maf1 knockout (KO) mice and adenoviral transfection were used to verify the role of Maf1 in cardiac hypertrophy. RNA pol III and ERK1/2 inhibitor were utilized to identify the effects of RNA pol III and ERK1/2. The possible interaction between Maf1 and ERK1/2 was clarified by immunoprecipitation (IP) analysis. Results: Four weeks after surgery, Maf1 KO mice exhibited significantly exacerbated AB-induced cardiac hypertrophy characterized by increased heart size, cardiomyocyte surface area, and atrial natriuretic peptide (ANP) expression and by exacerbated pulmonary edema. Also, the deficiency of Maf1 causes more severe cardiac dilation and dysfunction than wild type (WT) mice after pressure overload. In contrast, compared with adenoviral-GFP injected mice, mice injected with adenoviral-Maf1 showed significantly ameliorated AB-induced cardiac hypertrophy. In vitro study has demonstrated that Maf1 could significantly block phenylephrine (PE)-induced cardiomyocyte hypertrophy by inhibiting RNA pol III transcription. However, application of an RNA pol III inhibitor markedly improved Maf1 knockdown-promoted cardiac hypertrophy. Moreover, ERK1/2 was identified as a regulator of RNA pol III, and ERK1/2 inhibition by U0126 significantly repressed Maf1 knockdown-promoted cardiac hypertrophy accompanied by suppressed RNA pol III transcription. Additionally, IP analysis demonstrated that Maf1 could directly bind ERK1/2, suggesting Maf1 could interact with ERK1/2 and then inhibit RNA pol III transcription so as to attenuate the development of cardiac hypertrophy. Conclusions: Maf1 ameliorates PE- and AB-induced cardiac hypertrophy by inhibiting RNA pol III transcription via ERK1/2 signaling suppression.


Assuntos
Cardiomegalia/metabolismo , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/efeitos adversos , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética
9.
J Nutr Biochem ; 62: 221-229, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312797

RESUMO

Cardiac hypertrophy is a pathophysiological response to various pathological stresses and ultimately leads to heart failure. Oxidative stress is one of the critical processes involved in hypertrophy development. Fisetin, a small molecular flavonoid, has been shown to have anti-oxidative, anti-proliferative and anti-inflammatory properties. However, the effect of fisetin on cardiac hypertrophy remains unknown. In our present study, we showed that fisetin inhibited pressure overload-induced cardiac hypertrophy, improved cardiac function in vivo and suppressed phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. Reactive oxygen species (ROS) levels were markedly decreased by fisetin treatment in both hypertrophic hearts and cardiomyocytes. Moreover, fisetin significantly up-regulated the expression of antioxidative genes, including catalase (CAT), superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1). Furthermore, co-treatment with N-acetylcysteine (NAC; ROS scavenger) and fisetin did not have synergistic inhibitory effects on PE-induced cardiomyocyte hypertrophy, indicating that the anti-hypertrophic effects of fisetin are mainly associated with the blockade of oxidative stress. Finally, the pro-hypertrophic signaling pathways, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) kinase, were found to be suppressed by fisetin after pressure overload and PE treatment. In conclusion, our study revealed that fisetin protects against cardiac hypertrophy and that oxidative stress inhibition may be one of the pivotal mechanisms involved.


Assuntos
Cardiomegalia/tratamento farmacológico , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Cardiomegalia/etiologia , Sinergismo Farmacológico , Enzimas/genética , Enzimas/metabolismo , Flavonóis , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenilefrina/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa