Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 207(1): 234-243, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183366

RESUMO

T cell-interacting activating receptor on myeloid cells 1 (TARM-1) is a novel leukocyte receptor expressed in neutrophils and macrophages. It plays an important role in proinflammatory response in acute bacterial infection, but its immunomodulatory effects on chronic Mycobacterium tuberculosis infections remain unclear. TARM-1 expression was significantly upregulated on CD14high monocytes from patients with active pulmonary tuberculosis (TB) as compared that on cells from patients with latent TB or from healthy control subjects. Small interfering RNA knockdown of TARM-1 reduced expression levels of proinflammatory cytokines IL-12, IL-18, IL-1ß, and IL-8 in M. tuberculosis-infected macrophages, as well as that of HLA-DR and costimulatory molecules CD83, CD86, and CD40. Moreover, TARM-1 enhanced phagocytosis and intracellular killing of M. tuberculosis through upregulating reactive oxygen species. In an in vitro monocyte and T cell coculture system, blockade of TARM-1 activity by TARM-1 blocking peptide suppressed CD4+ T cell activation and proliferation. Finally, administration of TARM-1 blocking peptide in a mouse model of M. tuberculosis infection increased bacterial load and lung pathology, which was associated with decreased macrophage activation and IFN-γ production by T cell. Taken together, these results, to our knowledge, demonstrate a novel immune protective role of TARM-1 in M. tuberculosis infection and provide a potential therapeutic target for TB disease.


Assuntos
Macrófagos/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Adulto , Estudos de Coortes , Feminino , Humanos , Ativação de Macrófagos/imunologia , Masculino , Receptores Imunológicos/genética
2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687853

RESUMO

To address the challenge of coordinated combat involving multiple UAVs in reconnaissance and search attacks, we propose the Multi-UAV Distributed Self-Organizing Cooperative Intelligence Surveillance and Combat (CISCS) strategy. This strategy employs distributed control to overcome issues associated with centralized control and communication difficulties. Additionally, it introduces a time-constrained formation controller to address the problem of unstable multi-UAV formations and lengthy formation times. Furthermore, a multi-task allocation algorithm is designed to tackle the issue of allocating multiple tasks to individual UAVs, enabling autonomous decision-making at the local level. The distributed self-organized multi-UAV cooperative reconnaissance and combat strategy consists of three main components. Firstly, a multi-UAV finite time formation controller allows for the rapid formation of a mission-specific formation in a finite period. Secondly, a multi-task goal assignment module generates a task sequence for each UAV, utilizing an improved distributed Ant Colony Optimization (ACO) algorithm based on Q-Learning. This module also incorporates a colony disorientation strategy to expand the search range and a search transition strategy to prevent premature convergence of the algorithm. Lastly, a UAV obstacle avoidance module considers internal collisions and provides real-time obstacle avoidance paths for multiple UAVs. In the first part, we propose a formation algorithm in finite time to enable the quick formation of multiple UAVs in a three-dimensional space. In the second part, an improved distributed ACO algorithm based on Q-Learning is introduced for task allocation and generation of task sequences. This module includes a colony disorientation strategy to expand the search range and a search transition strategy to avoid premature convergence. In the third part, a multi-task target assignment module is presented to generate task sequences for each UAV, considering internal collisions. This module provides real-time obstacle avoidance paths for multiple UAVs, preventing premature convergence of the algorithm. Finally, we verify the practicality and reliability of the strategy through simulations.

3.
Small ; 18(5): e2105767, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881507

RESUMO

Nitrogen-doped carbon materials with abundant defects and strong potassium adsorption ability have been recognized as potential anodes for potassium ion batteries (PIBs). However, the limited content and uncontrolled type of nitrogen-doped sites hinder the further performance improvement of PIBs. Herein, this work proposes nitrogen phosphorous co-doped hollow carbon nanofibers (PNCNFs) derived from high-energy metal-organic frameworks (MOFs) with an ultra-high nitrogen content of 19.52 wt% and a high portion of more reactive pyridinic N sites. Furthermore, the highly open architecture exploded by released gases from high-energy MOFs provides sufficient edge sites to settle the N atoms and further form pyridinic N sites induced by phosphorous dopants. The resulting PNCNFs achieve excellent potassium ion storage performance with high reversible capacity (466.2 mAh g-1 ), superb rate capability (244.4 mAh g-1 at 8 A g-1 ), and excellent cycling performance (294.6 mAh g-1 after 3250 cycles). The density functional theory calculation reveals that the N/P defects enhance the potassium adsorption ability and improve the conductivity.

4.
Small ; 17(19): e2100135, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797201

RESUMO

3D carbon-based materials with multiscale hierarchy are promising electrode materials for electrochemical energy storage and conversion applications, but the synthesis in an efficient and large-scale way is still a great challenge. Herein, a carbon nanorod-assembled 3D superstructure is facilely fabricated by morphology-preserving conversion of a metal-organic framework (MOF) nanorod-assembled superstructure. The MOF superstructure can be fabricated in one-pot synthesis with high reproducibility and high yield by precise control of the MOF nucleation and growth. Its derived carbon inherits the nanorod-assembled superstructure and possesses abundant micropores and nitrogen doping, which can serve as a high-performance anode material for fast potassium storage. The superiority of the superstructure and the synergism of micropore capturing and nitrogen anchoring are verified both experimentally and theoretically.

5.
J Immunol ; 203(10): 2614-2620, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578271

RESUMO

Mucosal-associated invariant T (MAIT) cells play a key role in local and systemic immune responses. Studies suggest that type 2 diabetes (T2D) is associated with alterations in the human MAIT cell response. However, the mechanisms that regulate the survival and homeostasis of human MAIT cells are poorly defined. In this study, we demonstrate that the costimulatory TNF superfamily receptor OX40 was highly expressed in MAIT cells of patients with T2D. Compared with OX40-negative MAIT cells, OX40-positive MAIT cells showed a high activation and a memory phenotype. Surprisingly, OX40 expression was negatively correlated with the frequency of MAIT cells in the peripheral blood of T2D patients. Increased cleaved caspase-3 levels were observed in OX40+-expressing MAIT cells in T2D patients. In vitro, activated OX40 signaling by recombinant OX40L protein promoted caspase-3 activation and apoptosis of MAIT cells. Inhibition of caspase-3 restored apoptosis of MAIT cells induced by OX40 signaling. These results identify OX40 as an amplifier of activation-induced cell death of human blood MAIT cells and shed new light on the regulation of MAIT cells in the phase of immune responses in T2D.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores OX40/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Estudos de Coortes , Feminino , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Ligante OX40/farmacologia , Fenótipo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Angew Chem Int Ed Engl ; 60(32): 17314-17336, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124724

RESUMO

Metal-organic frameworks (MOFs), featuring porous crystalline structures with coordinated metal nodes and organic linkers, have recently found increasing interest in diverse applications. By virtue of their versatile and highly tunable compositions and structures, constructing hollow architectures will further endow MOFs with enhanced properties and designability, exceeding the molecular scale. MOFs could be considered as promising building units to fabricate complex hollow nanocomposites with faster mass transport, multiple active components, more exposed active sites, and better compatibility than bulk MOFs. To construct a promising blueprint for hollow pristine MOFs, this review provides a comprehensive overview for structural design strategies and applications of hollow pristine MOFs. We will highlight the merits, challenges and future potential by structuring and applying MOFs in sensing, separation, storage, catalysis, environmental remediation, photochemical and electrochemical energy conversion. This review might pave a new avenue for future development of novel pristine hollow MOFs.

7.
Angew Chem Int Ed Engl ; 60(20): 11048-11067, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910529

RESUMO

Supercapacitors (SCs), showing excellent power density, long service life, and high reversibility, have received great attention because of the increasing demand for energy storage devices. To further improve their performance, it is essential to develop advanced electrode materials. One group of materials, porous crystalline solids referred to as metal-organic frameworks (MOFs), have proved to be excellent templates for synthesizing functional materials to be employed in the preparation of electrodes for SCs. In comparison to monometallic MOFs, bimetallic MOFs and their derivatives offer a number of advantages, including tunable electrochemical activity, high charge capacity, and improved electrical conductivity. This review focuses on the use of MOF-derived bimetallic materials in SCs, the origin of the improved performance, and the latest developments in the field. Furthermore, the challenges and perspectives in this research area are discussed.

8.
Small ; 16(7): e1906133, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31913584

RESUMO

Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.

9.
Small ; 16(2): e1905075, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814261

RESUMO

Transition-metal phosphides have flourished as promising candidates for oxygen evolution reaction (OER) electrocatalysts. Herein, it is demonstrated that the electrocatalytic OER performance of CoP can be greatly improved by constructing a hybrid CoP/TiOx heterostructure. The CoP/TiOx heterostructure is fabricated using metal-organic framework nanocrystals as templates, which leads to unique hollow structures and uniformly distributed CoP nanoparticles on TiOx . The strong interactions between CoP and TiOx in the CoP/TiOx heterostructure and the conductive nature of TiOx with Ti3+ sites endow the CoP-TiOx hybrid material with high OER activity comparable to the state-of-the-art IrO2 or RuO2 OER electrocatalysts. In combination with theoretical calculations, this work reveals that the formation of CoP/TiOx heterostructure can generate a pathway for facile electron transport and optimize the water adsorption energy, thus promoting the OER electrocatalysis.

10.
Chemistry ; 26(18): 4001-4006, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31647595

RESUMO

Transition-metal-based phosphides (TMPs) have been considered as attractive electrocatalysts for water splitting due to their earth-abundance and remarkable catalytic activity. As a representative type of precursors, metal-organic frameworks (MOFs) provide ideal plateaus for the design of nanostructured TMPs. In this work, the hierarchically structured iron phosphide nanobundles (FeP-500) were fabricated by one-step phosphorization of an iron-based MOF (MET(Fe)) precursor. The derived FeP-500 nanobundles were constructed by quasi-paralleled one-dimensional nanorods with uneven surface, which provided channels for electrolyte penetration, mass transport, and effective exposure of active sites during the water-splitting process. With the addition of conductive Super P, the obtained FeP-500-S exhibited a good electrocatalytic performance towards the hydrogen evolution reaction in alkaline electrolyte (1 mol L-1 KOH). Furthermore, to investigate the influence of secondary metal doping, a series of isoreticular MOF precursors and bimetallic TMPs were fabricated. The results indicated that the catalytic performance is structure dominated.

11.
Chem Soc Rev ; 48(24): 5658-5716, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31742279

RESUMO

Nitrogen is a fundamental constituent for all living creatures on the Earth and modern industrial society. The current nitrogen industry is largely powered by fossil fuels with huge energy consumption and carbon dioxide emission, and nitrogen pollution in surface water bodies induced by the indiscriminate discharge of industrial and domestic wastewater has become a worldwide environmental concern. Electrochemical techniques for nitrogen fixation and transformation under mild conditions are promising approaches to meet the challenge of efficiently managing and balancing the nitrogen cycle, where the rational design of advanced electrocatalysts from both structural and compositional aspects down to the nanoscale plays the most essential role. Herein, important nitrogen species including dinitrogen (N2), ammonia (NH3) and hydrazine (N2H4), their transformation processes between each other including the nitrogen reduction reaction (NRR), ammonia oxidation reaction (AOR) and hydrazine oxidation reaction (HzOR), and research progress on the development of related electrocatalysts are systematically summarized, aiming at establishing a general picture of the whole nitrogen cycle instead of a certain single reaction. Strategies combining theoretical computations and experimental optimizations are proposed to improve the catalytic performance including activity, efficiency, selectivity and stability, finally contributing to a self-sufficient and carbon-free "green" nitrogen economy.

12.
Angew Chem Int Ed Engl ; 59(5): 1871-1877, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31746538

RESUMO

Antiperovskite Co3 InC0.7 N0.3 nanomaterials with highly enhanced oxygen reduction reaction (ORR) performance were prepared by tuning nitrogen contents through a metal-organic framework (MOF)-derived strategy. The nanomaterial surpasses all reported noble-metal-free antiperovskites and even most perovskites in terms of onset potential (0.957 V at J=0.1 mA cm-2 ) and half-wave potential (0.854 V). The OER and zinc-air battery performance demonstrate its multifunctional oxygen catalytic activities. DFT calculation was performed and for the first time, a 4 e- dissociative ORR pathway on (200) facets of antiperovskite was revealed. Free energy studies showed that nitrogen substitution could strengthen the OH desorption as well as hydrogenation that accounts for the enhanced ORR performance. This work expands the scope for material design via tailoring the nitrogen contents for optimal reaction free energy and hence performance of the antiperovskite system.

13.
Cancer Cell Int ; 19: 115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068760

RESUMO

BACKGROUND: miR-429 and TLN1 have been shown to affect the biological behaviours of many carcinomas. However, their effects in nasopharyngeal carcinoma (NPC) are not yet clear. Here, we investigated their regulatory relationships and effects on NPC cells. METHODS: TargetScan was used to predict the regulatory relationships of miR-429 and TLN1 in NPC cells. Then, Western blotting and quantitative real-time PCR (qPCR) were performed to examine TLN1 levels, and qPCR was used to determine miR-429 levels in NPC cell lines with different metastatic characteristics (5-8F, CNE-2, CNE-1, 6-10B and NP69), to investigate whether TLN1 and miR-429 are correlated with the metastatic characteristics of these cells. Next, we upregulated or downregulated miR-429 in 5-8F and 6-10B cells, which have different tumourigenicity and transferability, and examined TLN1 expression by western blotting and qPCR after transfection. QPCR was also performed to confirm successful transfection of miR-429 mimic into 5-8F and 6-10B cells. Dual luciferase reporter gene assay was performed to investigate whether miR-429 regulates TLN1 by binding to its 3'UTR. After transfection, Cell Counting Kit-8 (CCK8) and IncuCyte were used to examine the proliferation of these cells, and wound-healing assay, Transwell migration assay, and invasion assays were performed to investigate the changes in migration and invasion after transfection. RESULTS: Western blotting and qPCR analyses showed that the protein level of TLN1 was negatively correlated with miR-429 in NPC cell lines (P < 0.05), while the mRNA level showed no relation with miR429 expression (P > 0.05). In addition, cells with high transferability showed high TLN1 expression at the protein level, while miR429 expression showed the opposite trend (P < 0.05), but there were no differences at the mRNA level between the different cell lines. Overexpression of miR429 in 5-8F and 6-10B cells was accompanied by downregulation of TLN1 at the protein level (P < 0.05), while there were no significant differences at the mRNA level (P > 0.05). In addition, transferability, proliferation, and invasion were downregulated by miR429 overexpression (P < 0.05). However, dual-luciferase reporter gene assay indicated that TLN1 was not a direct target of miR-429. CONCLUSION: This study showed that miR-429 functions as a tumour suppressor in NPC by downregulation of TLN1, although the relationship is not direct.

14.
BMC Cancer ; 19(1): 37, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621619

RESUMO

BACKGROUND: Findings remain unclear whether neutrophil-to-lymphocyte ratio (NLR) detrimentally affects advanced nasopharyngeal carcinoma (NPC) prognosis. We aim to evaluate the prognostic value of NLR in patients with NPC based on a large-scale cohort from an endemic area. METHODS: We selected patients retrospectively from a cohort examining long-term cancer outcomes following diagnosis. Neutrophil counts and lymphocyte counts were assessed prior to treatment. Kaplan-Meier method and log-rank test were used to calculate and compare survival outcomes. Additionally, Cox proportional hazards model was utilized to carry out univariate and multivariate analyses. RESULTS: Between October 2009 and August 2012, we enrolled 1550 consecutive NPC patients staged II-IVB. The median value of NLR was 2.27 (interquartile range [IQR], 1.71-3.12). Determined by operating characteristic curve using overall survival (OS) as an endpoint, the cutoff value for NLR was 2.50. At 5 years, NLR > 2.50 was associated with inferior OS (90.3% vs 82.5%; P < 0.001), distant metastasis-free survival (DMFS, 89.4% vs 85.0%; P = 0.014), and progression-free survival (PFS, 80.9% vs 76.5%; P = 0.031) than NLR ≤2.50. In multivariate analysis, NLR was found to be a significant prognostic factor for OS (HR, 1.72; 95% CI, 131-2.24; P < 0.001), DMFS (HR, 1.45; 95% CI, 1.10-1.92; P = 0.009), and PFS (HR, 1.29; 95% CI, 1.04-1.59; P = 0.021). CONCLUSION: Pretreatment NLR independently affects survival. Our findings suggest that NLR measurements will be of great clinical significance in the management of NPC.


Assuntos
Linfócitos/patologia , Carcinoma Nasofaríngeo/patologia , Neutrófilos/patologia , Prognóstico , Adolescente , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/sangue
15.
Angew Chem Int Ed Engl ; 58(7): 1975-1979, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30520258

RESUMO

Large carbon networks featuring hierarchical pores and atomically dispersed metal sites (ADMSs) are ideal materials for energy storage and conversion due to the spatially continuous conductive networks and highly active ADMSs. However, it is a challenge to synthesize such ADMS-decorated carbon networks. Here, an innovative fusion-foaming methodology is presented in which energetic metal-organic framework (EMOF) nanoparticles are puffed up to submillimeter-scaled ADMS-decorated carbon networks via a one-step pyrolysis. Their extraordinary catalytic performance towards oxygen reduction reaction verifies the practicability of this synthetic approach. Moreover, this approach can be readily applicable to a wide range of unexplored EMOFs, expanding scopes for future materials design.

16.
Small ; 14(49): e1803500, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345628

RESUMO

Construction of multifunctional highly active earth-abundant electrocatalysts on a large scale is a great challenge due to poor control over nanostructural features and limited active sites. Here, a simple methodology to tailor metal-organic frameworks (MOFs) to extract highly active multifunctional electrocatalysts on a large scale for oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution reaction (HER) is presented. The N, S codoped Fe2 N decorated highly porous and defect-rich carbon nanosheets are grown using MOF xerogels, melamine, and polyvinylpyrollidone. The resulting catalyst exhibits excellent activity for ORR with an onset (0.92 V) and half-wave (0.81 V) potential similar to state-of-the-art Pt/C catalysts. The catalyst also shows outstanding OER and HER activities with a small overpotential of 360 mV in 1 m KOH and -123 mV in 0.5 m H2 SO4 at a current density of 10 mA cm-2 , respectively. Excellent catalytic properties are further supported by theoretical calculations where relevant models are built and various possible activation sites are identified by first-principles calculations. The results suggest that the carbon atoms adjacent to heteroatoms as well as Fe2 -N sites present the active sites for improved catalytic response, which is in agreement with the experimental results.

17.
Small ; 14(23): e1800285, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29718590

RESUMO

Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO)0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage.

18.
Nano Lett ; 17(5): 2788-2795, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394621

RESUMO

Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.

19.
Angew Chem Int Ed Engl ; 57(31): 9604-9633, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29460497

RESUMO

Metal sites play an essential role in both electrocatalytic and photocatalytic energy conversion. The highly ordered arrangements of the organic linkers and metal nodes as well as the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Porous carbon materials doped with ADMSs can be derived from these ADMS-incorporating MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique advantages over molecular or bulk metal-based catalysts and bridge the gap between homogeneous and heterogeneous catalysts for energy-conversion applications. This Review presents recent progress in the design and incorporation of ADMSs in MOFs and MOF-derived materials for energy-conversion applications.

20.
Small ; 13(41)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28910511

RESUMO

Heterometallic metal-organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF-8/67 (M(2-mIM)2 , M = Zn for ZIF-8, and Co for ZIF-67, 2-mIM = 2-methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single-component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co-rich cores to Zn-rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co2+ is added first, ZIF-67@ZIF-8/67 core-shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn2+ is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn2+ .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa