Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863244

RESUMO

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
2.
Genes Dev ; 31(4): 370-382, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289141

RESUMO

Human colorectal cancer (CRC) is a major cause of cancer mortality and frequently harbors activating mutations in the KRAS gene. To understand the role of oncogenic KRAS in CRC, we engineered a mouse model of metastatic CRC that harbors an inducible oncogenic Kras allele (Krasmut ) and conditional null alleles of Apc and Trp53 (iKAP). The iKAP model recapitulates tumor progression from adenoma through metastases. Whole-exome sequencing revealed that the Krasmut allele was heterogenous in primary tumors yet homogenous in metastases, a pattern consistent with activated Krasmut signaling being a driver of progression to metastasis. System-level and functional analyses revealed the TGF-ß pathway as a key mediator of Krasmut -driven invasiveness. Genetic extinction of Krasmut resulted in specific elimination of the Krasmut subpopulation in primary and metastatic tumors, leading to apoptotic elimination of advanced invasive and metastatic disease. This faithful CRC model provides genetic evidence that Krasmut drives CRC invasion and maintenance of metastases.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genética , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Nature ; 542(7639): 119-123, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099419

RESUMO

The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.


Assuntos
Carcinoma Ductal Pancreático/genética , Deleção de Genes , Malato Desidrogenase/deficiência , Neoplasias Pancreáticas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Biocatálise , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/psicologia , Carcinoma Ductal Pancreático/terapia , Humanos , Ácidos Cetoglutáricos/metabolismo , Malato Desidrogenase/genética , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , NADP/biossíntese , NADP/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transaminases/biossíntese , Transaminases/genética
4.
Cancer Cell Int ; 19: 126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110467

RESUMO

BACKGROUND: Ubinuclein-2 (UBN2) is a nuclear protein that interacts with many transcription factors. The molecular role and mechanism of UBN2 in the development and progression of cancers, including colorectal cancer (CRC), is not well understood. The current study explored the role of UBN2 in the development and progression CRC. METHODS: Oncomine network and The Cancer Genome Atlas (TCGA) database were downloaded and Gene Set Enrichment Analysis (GSEA) was performed to compare the UBN2's expression between normal and tumor tissues, as well as the potential correlation of UBN2 expression with signaling pathways. Immunohistochemistry (IHC), qRT-PCR and Western blotting were performed to determine the expression of UBN2 in CRC tissues or cell lines. In vitro proliferation and invasion assays, and orthotopic mouse metastatic model were used to analyze the effect of UBN2 on the development and progression of CRC. RESULTS: The analysis of UBN2 expression using Oncomine network showed that UBN2 was upregulated in CRC tissues compared to matched adjacent normal intestinal epithelial tissues. IHC, qRT-PCR and Western blotting confirmed that UBN2 expression is higher in CRC tissues compared with matched adjacent normal intestinal epithelial tissues. In addition, analyses of TCGA data revealed that high UBN2 expression was associated with advanced stages of lymph node metastasis, distant metastasis, and short survival time in CRC patients. IHC showed that high UBN2 expression is correlated with advanced stages of CRC. Moreover, UBN2 is highly expressed in the liver metastatic lesions. Furthermore, knockdown of UBN2 inhibited the growth, invasiveness and metastasis of CRC cells via regulation of the Ras/MAPK signaling pathway. CONCLUSION: The current study demonstrates that UBN2 promotes tumor progression in CRC. UBN2 may be used as a promising biomarker for predicting the prognosis of CRC patients.

5.
J Proteome Res ; 17(10): 3445-3453, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30178671

RESUMO

Pulmonary arterial hypertension (PAH) is the major cause of death in fast growing meat-type chickens (broiler chickens). At present, the underlying mechanisms that give rise to PAH are not fully understood. To identify the metabonomics profiles characterizing the process, we conducted a comprehensive gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of lung tissues from PAH broilers and age-matched controls. PAH was induced by excess salt in drinking water. Medial hypertrophy of pulmonary arteries was present in PAH birds as compared with controls. The metabonomics profiles of lung tissues well distinguished PAH broilers from control subjects. Significant changes in the levels of 41 metabolites were detected in PAH vs normal birds. Aside from the metabolic alterations indicating a status of oxidative stress and inflammation, evidence of reduced cellular uptake of arginine due to increased lysine biosynthesis and of a shift of arginine metabolism to arginase pathway were observed. In addition, PAH birds showed increased biosynthesis of fatty acids, which may be associated with excessive proliferation of vascular cells during pulmonary vascular remodeling. Furthermore, we observed significant changes in pentose phosphate pathway and increased aminomalonic acid in PAH broilers. These results provide additional biochemical insights into the pathogenesis of the PAH. Our data may lead to the development of new strategies to control PAH in broilers.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Artéria Pulmonar/metabolismo , Animais , Galinhas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hipertrofia , Pulmão/patologia , Pulmão/fisiopatologia , Artéria Pulmonar/fisiopatologia
6.
Cancer Cell Int ; 17: 91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118671

RESUMO

BACKGROUND: miRNAs are regarded as molecular biomarkers and therapeutic targets for colorectal cancer (CRC), a series of miRNAs have been proven to involve into CRC carcinogenesis, invasion and metastasis. Aberrant miR-422a expression and its roles have been reported in some cancers. However, the function and underlying mechanism of miR-422a in the progression of CRC remain largely unknown. METHODS: Real-time PCR were used to quantify miR-422a expression in CRC tissues. Both vivo and vitro functional assays showed miR-422a inhibits CRC cell proliferation. Target prediction program (miRBase) and luciferase reporter assays were conducted to confirm the target genes AKT1 and MAPK1 of miR-422a. Specimens from 50 patients with CRC were analyzed for the correlation between the expression of miR-422a and the expression of the target genes AKT1 and MAPK1 by real-time PCR. RESULTS: MiR-422a was down­regulated in CRC tissues and cell lines. Ectopic expression of miR-422a inhibited cell proliferation and tumor growth ability; inhibition of endogenous miR-422a, by contrast, promoted cell proliferation and tumor growth ability of CRC cells. MiR-422a directly targets 3'-UTR of the AKT1 and MAPK1, down-regulation of miR-422a led to the activation of Raf/MEK/ERK and PI3K/AKT signaling pathways to promote cell proliferation in CRC. In addition, miR-422a expression was negatively correlated with the expressions of AKT1 and MAPK1 in CRC tissues. CONCLUSION: miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1.

8.
J Pathol ; 232(4): 415-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24293274

RESUMO

Colorectal cancer (CRC) is the third most common cancer in the USA. MicroRNAs play important roles in the pathogenesis of CRC. In this study, we investigated the role of miR-30b in CRC and found that its expression was significantly lower in CRC tissues than that in normal tissues. We showed that a low expression level of miR-30b was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of miR-30b suppressed CRC cell proliferation in vitro and tumour growth in vivo. Specifically, miR-30b promoted G1 arrest and induced apoptosis. Moreover, KRAS, PIK3CD and BCL2 were identified as direct and functional targets of miR-30b. MiR-30b directly targeted the 3'-untranslated regions of their mRNAs and repressed their expression. This study revealed functional and mechanistic links between miRNA-30b and oncogene KRAS, PIK3CD and BCL2 in the pathogenesis of CRC. MiR-30b not only plays important roles in the regulation of cell proliferation and tumour growth in CRC, but is also a potential prognostic marker or therapeutic target for CRC. Restoration of miR-30b expression may represent a promising therapeutic approach for targeting malignant CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Genes Supressores de Tumor , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas p21(ras) , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral , Proteínas ras/genética
9.
Int J Gynecol Cancer ; 25(8): 1353-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332389

RESUMO

OBJECTIVE: The aim of this study is to investigate the clinicopathologic significance and potential role of metastasis-associated in colon cancer-1 (MACC1) in the progression of cervical cancer. METHODS: MACC1 expression was examined in cervical cancer cell lines, 6 matched cervical cancer tissues, and adjacent noncancerous tissues using Western blotting and real-time reverse transcriptase polymerase chain reaction. MACC1 protein expression and localization were determined in 181 paraffin-embedded archived cervical cancer samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. The effects of MACC1 on cell migration, invasion, and angiogenesis were examined using migration assay, wound healing assay, 3-dimensional morphogenesis assay, and chicken chorioallantoic membrane assay. Western blotting was performed to examine the impact of MACC1 on the Akt and nuclear factor κB signaling pathways. RESULTS: Both protein and messenger RNA levels of MACC1 was up-regulated in cervical cancer cell lines and cervical cancer tissues, as compared with normal tissues. High MACC1 expression was detected in 96 (53%) of 181 of the cervical cancer tissues. In addition, high MACC1 expression correlated significantly with aggressiveness of cervical cancer, including International Federation of Gynecology and Obstetric stage (P = 0.001), pelvic lymph node metastasis (P = 0.004), recurrence (P = 0.037), and poor survival (P = 0.001). Moreover, enforced expression of MACC1 in cervical cancer cell lines significantly enhanced cell migration, invasion, and angiogenesis. Conversely, knockdown of MACC1 caused an inhibition of cell migration, invasion, and angiogenesis. Up-regulation of MACC1 increased, but knockdown of MACC1 decreased the expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, enforced expression of MACC1 could enhance, but knockdown of MACC1 could reduce AKT and nuclear factor κB pathway activity. CONCLUSIONS: Our findings suggest that MACC1 protein, as a valuable marker of cervical cancer prognosis, plays an important role in the progression of human cervical cancer cells.


Assuntos
Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica , Fatores de Transcrição/fisiologia , Neoplasias do Colo do Útero/patologia , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/genética , Biomarcadores Tumorais/fisiologia , Western Blotting , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Movimento Celular , Proliferação de Células , Membrana Corioalantoide/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Transativadores , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/genética
10.
Cell Discov ; 10(1): 70, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937452

RESUMO

KRAS mutations are highly prevalent in a wide range of lethal cancers, and these mutant forms of KRAS play a crucial role in driving cancer progression and conferring resistance to treatment. While there have been advancements in the development of small molecules to target specific KRAS mutants, the presence of undruggable mutants and the emergence of secondary mutations continue to pose challenges in the clinical treatment of KRAS-mutant cancers. In this study, we developed a novel molecular tool called tumor-targeting KRAS degrader (TKD) that effectively targets a wide range of KRAS mutants. TKD is composed of a KRAS-binding nanobody, a cell-penetrating peptide selectively targeting cancer cells, and a lysosome-binding motif. Our data revealed that TKD selectively binds to KRAS in cancer cells and effectively induces KRAS degradation via a lysosome-dependent process. Functionally, TKD suppresses tumor growth with no obvious side effects and enhances the antitumor effects of PD-1 antibody and cetuximab. This study not only provides a strategy for developing drugs targeting "undruggable" proteins but also reveals that TKD is a promising therapeutic for treating KRAS-mutant cancers.

11.
Nat Med ; 30(4): 1035-1043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438735

RESUMO

Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .


Assuntos
Aminopiridinas , Benzamidas , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/efeitos adversos , Bevacizumab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores de Histona Desacetilases/efeitos adversos , Inibidores de Histona Desacetilases/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
12.
BMC Gastroenterol ; 13: 126, 2013 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-23937454

RESUMO

BACKGROUND: Src-associated in mitosis (Sam68; 68 kDa) has been implicated in the oncogenesis and progression of several human cancers. The aim of this study was to investigate the clinicopathologic significance of Sam68 expression and its subcellular localization in colorectal cancer (CRC). METHODS: Sam68 expression was examined in CRC cell lines, nine matched CRC tissues and adjacent noncancerous tissues using reverse transcription (RT)-PCR, quantitative RT-PCR and Western blotting. Sam68 protein expression and localization were determined in 224 paraffin-embedded archived CRC samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. RESULTS: Sam68 was upregulated in CRC cell lines and CRC, as compared with normal tissues; high Sam68 expression was detected in 120/224 (53.6%) of the CRC tissues. High Sam68 expression correlated significantly with poor differentiation (P = 0.033), advanced T stage (P < 0.001), N stage (P = 0.023) and distant metastasis (P = 0.033). Sam68 nuclear localization correlated significantly with poor differentiation (P = 0.002) and T stage (P =0.021). Patients with high Sam68 expression or Sam68 nuclear localization had poorer overall survival than patients with low Sam68 expression or Sam68 cytoplasmic localization. Patients with high Sam68 expression had a higher risk of recurrence than those with low Sam68 expression. CONCLUSIONS: Overexpression of Sam68 correlated highly with cancer progression and poor differentiation in CRC. High Sam68 expression and Sam68 nuclear localization were associated with poorer overall survival.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sobrevida , Regulação para Cima , Adulto Jovem
13.
Commun Biol ; 6(1): 1282, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114770

RESUMO

Metagenomic-based studies have predicted an extraordinary number of potential antibiotic-resistance genes (ARGs). These ARGs are hidden in various environmental bacteria and may become a latent crisis for antibiotic therapy via horizontal gene transfer. In this study, we focus on a resistance gene cph, which encodes a phosphotransferase (Cph) that confers resistance to the antituberculosis drug capreomycin (CMN). Sequence Similarity Network (SSN) analysis classified 353 Cph homologues into five major clusters, where the proteins in cluster I were found in a broad range of actinobacteria. We examine the function and antibiotics targeted by three putative resistance proteins in cluster I via biochemical and protein structural analysis. Our findings reveal that these three proteins in cluster I confer resistance to CMN, highlighting an important aspect of CMN resistance within this gene family. This study contributes towards understanding the sequence-structure-function relationships of the phosphorylation resistance genes that confer resistance to CMN.


Assuntos
Antibacterianos , Capreomicina , Capreomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/genética , Genes Bacterianos , Imunidade Inata
14.
Sci Rep ; 12(1): 8432, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589865

RESUMO

Synovial fluid-derived mesenchymal stem cells (SFMSCs) play important regulatory roles in the physiological balance of the temporomandibular joint. Interleukin (IL)-1ß regulates the biological behavior of SFMSCs; however, the effects of IL-1ß on long noncoding RNA (lncRNA) and mRNA expression in SFMSCs in the temporomandibular joint are unclear. Here, we evaluated the lncRNA and mRNA expression profiles of IL-1ß-stimulated SFMSCs. Using microarrays, we identified 264 lncRNAs (203 upregulated, 61 downregulated) and 258 mRNAs (201 upregulated, 57 downregulated) that were differentially expressed after treatment with IL-1ß (fold changes ≥ 2, P < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis found that one of the most significantly enriched pathways was the NF-κB pathway. Five paired antisense lncRNAs and mRNAs, eight paired enhancer lncRNAs and mRNAs, and nine paired long intergenic noncoding RNAs and mRNAs were predicted to be co-expressed. A network constructed by the top 30 K-score genes was visualized and evaluated. We found a co-expression relationship between RP3-467K16.4 and IL8 and between LOC541472 and IL6, which are related to NF-κB pathway activation. Overall, our results provide important insights into changes in lncRNA and mRNA expression in IL-1ß-stimulated SFMSCs, which can facilitate the identification of potential therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Líquido Sinovial/metabolismo
15.
Bone Joint Res ; 11(1): 40-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35084211

RESUMO

AIMS: In the repair of condylar cartilage injury, synovium-derived mesenchymal stem cells (SMSCs) migrate to an injured site and differentiate into cartilage. This study aimed to confirm that histone deacetylase (HDAC) inhibitors, which alleviate arthritis, can improve chondrogenesis inhibited by IL-1ß, and to explore its mechanism. METHODS: SMSCs were isolated from synovium specimens of patients undergoing temporomandibular joint (TMJ) surgery. Chondrogenic differentiation potential of SMSCs was evaluated in vitro in the control, IL-1ß stimulation, and IL-1ß stimulation with HDAC inhibitors groups. The effect of HDAC inhibitors on the synovium and condylar cartilage in a rat TMJ arthritis model was evaluated. RESULTS: Interleukin (IL)-1ß inhibited the chondrogenic differentiation potential of SMSCs, while the HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and panobinostat (LBH589), attenuated inhibition of IL-1ß-induced SMSC chondrogenesis. Additionally, SAHA attenuated the destruction of condylar cartilage in rat TMJ arthritis model. IL-6 (p < 0.001) and matrix metalloproteinase 13 (MMP13) (p = 0.006) were significantly upregulated after IL-1ß stimulation, while SAHA and LBH589 attenuated IL-6 and MMP13 expression, which was upregulated by IL-1ß in vitro. Silencing of IL-6 significantly downregulated MMP13 expression and attenuated IL-1ß-induced chondrogenesis inhibition of SMSCs. CONCLUSION: HDAC inhibitors SAHA and LBH589 attenuated chondrogenesis inhibition of SMSC induced by IL-1ß in TMJ, and inhibition of IL-6/MMP13 pathway activation contributes to this biological progress. This study provides a theoretical basis for the application of HDAC inhibitors in the treatment of TMJ arthritis. Cite this article: Bone Joint Res 2022;11(1):40-48.

16.
Front Immunol ; 13: 933973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045691

RESUMO

Background: Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods: In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results: Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion: Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.


Assuntos
Apoptose , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Mutação , Gradação de Tumores , Prognóstico , Microambiente Tumoral/genética , Cobre
17.
Clin Transl Allergy ; 12(5): e12151, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35540108

RESUMO

Background: Hymenoptera stings can induce dysregulated inflammation and immediate hypersensitivity reactions including anaphylaxis. However, the molecular mechanisms underlying peripheral immune responses during Hymenoptera venom allergy (HVA) remain elusive. Methods: Here we determined the single-cell transcriptomic profiling from highly heterogeneous peripheral blood cells in patients with HVA through unbiased single-cell RNA sequencing and multiple models of computational analyses. Results: Through clustering analysis by uniform manifold approximation and projection, we revealed an increased number of monocytes in the acute phase and identified innate immune responses, leukocyte activation, and cellular detoxification as the main involved biological processes. We used filter analysis to identify that CLU that encodes clusterin was highly expressed in monocytes, and the co-expressed genes of CLU further supported the key role of monocyte. We further used pseudo-temporal ordering of cells and scRNA velocity analysis to delineate disease-associated monocyte lineages and states in patients with HVA. Conclusions: Our comprehensive molecular profiling of blood samples from patients with HVA revealed previously unknown molecular changes, providing important insights into the mechanism of venom allergy and potential therapeutic targets.

18.
J Transl Med ; 9: 205, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22133054

RESUMO

BACKGROUND: Astrocyte elevated gene-1 (AEG-1) is associated with tumorigenesis and progression in diverse human cancers. The present study was aimed to investigate the clinical and prognostic significance of AEG-1 in salivary gland carcinomas (SGC). METHODS: Real-time PCR and western blot analyses were employed to examine AEG-1 expression in two normal salivary gland tissues, eight SGC tissues of various clinical stages, and five pairs of primary SGC and adjacent salivary gland tissues from the same patient. Immunohistochemistry (IHC) was performed to examine AEG-1 protein expression in paraffin-embedded tissues from 141 SGC patients. Statistical analyses was applies to evaluate the diagnostic value and associations of AEG-1 expression with clinical parameters. RESULTS: AEG-1 expression was evidently up-regulated in SGC tissues compared with that in the normal salivary gland tissues and in matched adjacent salivary gland tissues. AEG-1 protein level was positively correlated with clinical stage (P < 0.001), T classification (P = 0.008), N classification (P = 0.008) and M classifications (P = 0.006). Patients with higher AEG-1 expression had shorter overall survival time, whereas those with lower tumor AEG-1 expression had longer survival time. CONCLUSIONS: Our results suggest that AEG-1 expression is associated with SGC progression and may represent a novel and valuable predictor for prognostic evaluation of SGC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Moléculas de Adesão Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Estadiamento de Neoplasias , Inclusão em Parafina , Prognóstico , Proteínas de Ligação a RNA , Neoplasias das Glândulas Salivares/diagnóstico , Estatísticas não Paramétricas , Bancos de Tecidos , Regulação para Cima/genética
19.
Chin J Cancer ; 30(9): 627-37, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21880184

RESUMO

Breast cancer is one of the leading causes of cancer death worldwide. This study aimed to analyze the expression of centromere protein H (CENP-H) in breast cancer and to correlate it with clinicopathologic data, including patient survival. Using reverse transcription-polymerase chain reaction and Western blotting to detect the expression of CENP-H in normal mammary epithelial cells, immortalized mammary epithelial cell lines, and breast cancer cell lines, we observed that the mRNA and protein levels of CENP-H were higher in breast cancer cell lines and in immortalized mammary epithelial cells than in normal mammary epithelial cells. We next examined CENP-H expression in 307 paraffin-embedded archived samples of clinicopathologically characterized breast cancer using immunohistochemistry, and detected high CENP-H expression in 134 (43.6%) samples. Statistical analysis showed that CENP-H expression was related with clinical stage (P = 0.001), T classification (P = 0.032), N classification (P = 0.018), and Ki-67 (P < 0.001). Patients with high CENP-H expression had short overall survival. Multivariate analysis showed that CENP-H expression was an independent prognostic indicator for patient survival. Our results suggest that CENP-H protein is a valuable marker of breast cancer progression and prognosis.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Mama/citologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Seguimentos , Humanos , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Regulação para Cima
20.
Cancer Discov ; 10(4): 608-625, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32046984

RESUMO

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.


Assuntos
Citocinas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Reprogramação Celular/genética , Humanos , Camundongos , Oncogenes , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transfecção , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa