Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Trends Biochem Sci ; 49(6): 545-556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622038

RESUMO

Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.


Assuntos
Dioxigenases , Compostos de Sulfidrila , Dioxigenases/metabolismo , Dioxigenases/química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Animais , Humanos , Oxirredução , Especificidade por Substrato
2.
Plant J ; 118(4): 1054-1070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308388

RESUMO

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Assuntos
Álcool Desidrogenase , Proteínas de Arabidopsis , Arabidopsis , Oxirredução , Arabidopsis/enzimologia , Arabidopsis/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Especificidade por Substrato , S-Nitrosoglutationa/metabolismo , Sequência de Aminoácidos , Etanol/metabolismo
3.
Nature ; 569(7758): 714-717, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092919

RESUMO

Complex multicellular organisms evolved on Earth in an oxygen-rich atmosphere1; their tissues, including stem-cell niches, require continuous oxygen provision for efficient energy metabolism2. Notably, the maintenance of the pluripotent state of animal stem cells requires hypoxic conditions, whereas higher oxygen tension promotes cell differentiation3. Here we demonstrate, using a combination of genetic reporters and in vivo oxygen measurements, that plant shoot meristems develop embedded in a low-oxygen niche, and that hypoxic conditions are required to regulate the production of new leaves. We show that hypoxia localized to the shoot meristem inhibits the proteolysis of an N-degron-pathway4,5 substrate known as LITTLE ZIPPER 2 (ZPR2)-which evolved to control the activity of the class-III homeodomain-leucine zipper transcription factors6-8-and thereby regulates the activity of shoot meristems. Our results reveal oxygen as a diffusible signal that is involved in the control of stem-cell activity in plants grown under aerobic conditions, which suggests that the spatially distinct distribution of oxygen affects plant development. In molecular terms, this signal is translated into transcriptional regulation by the N-degron pathway, thereby linking the control of metabolic activity to the regulation of development in plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Hipóxia Celular , Meristema/crescimento & desenvolvimento , Oxigênio/metabolismo , Aerobiose , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meristema/genética , Meristema/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteólise , Células-Tronco/citologia , Dedos de Zinco
4.
Plant Physiol ; 189(2): 1153-1168, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289909

RESUMO

Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial ß-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cloroplastos/metabolismo , Ficobilissomas
5.
Plant Cell Environ ; 46(1): 322-338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36120894

RESUMO

N-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups. A-type PCOs are conserved across all plant species and are generally unaffected at the messenger RNA level by oxygen availability. Instead, B-type PCOs appeared in spermatophytes to acquire transcriptional regulation in response to hypoxia. The inactivation of two A-type PCOs in Arabidopsis thaliana, PCO4 and PCO5, is sufficient to activate the anaerobic response in young seedlings, whereas the additional removal of B-type PCOs leads to a stronger induction of anaerobic genes and impairs plant growth and development. Our results show that both PCO types are required to regulate the anaerobic response in angiosperms. Therefore, while it is possible to distinguish two clades within the PCO family, we conclude that they all contribute to restrain the anaerobic transcriptional programme in normoxic conditions and together generate a molecular switch to toggle the hypoxic response.


Assuntos
Cisteína Dioxigenase , Oxigênio , Cisteína , Filogenia , Hipóxia
6.
Proc Natl Acad Sci U S A ; 117(37): 23140-23147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868422

RESUMO

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Fatores de Transcrição
7.
Plant J ; 104(4): 979-994, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860440

RESUMO

Plants need to attune their stress responses to the ongoing developmental programmes to maximize their efficacy. For instance, successful submergence adaptation is often associated with a delicate balance between saving resources and their expenditure to activate measures that allow stress avoidance or attenuation. We observed a significant decrease in submergence tolerance associated with ageing in Arabidopsis thaliana, with a critical step between 2 and 3 weeks of post-germination development. This sensitization to flooding was concomitant with the transition from juvenility to adulthood. Transcriptomic analyses indicated that a group of genes related to abscisic acid and oxidative stress response was more highly expressed in juvenile plants than in adult ones. These genes are induced by the endomembrane tethered transcription factor ANAC017 that was in turn activated by submergence-associated oxidative stress. A combination of molecular, biochemical and genetic analyses showed that these genes are located in genomic regions that move towards a heterochromatic state with adulthood, as marked by lysine 4 trimethylation of histone H3. We concluded that, while the mechanisms of flooding stress perception and signal transduction were unaltered between juvenile and adult phases, the sensitivity that these mechanisms set into action is integrated, via epigenetic regulation, into the developmental programme of the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigênese Genética , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Germinação , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fatores de Transcrição/genética
8.
New Phytol ; 229(1): 50-56, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960974

RESUMO

Synthetic biology can greatly aid the investigation of fundamental regulatory mechanisms and enable their direct deployment in the host organisms of choice. In the field of plant hypoxia physiology, a synthetic biology approach has recently been exploited to infer general properties of the plant oxygen sensing mechanism, by expression of plant-specific components in yeast. Moreover, genetic sensors have been devised to report cellular oxygen levels or physiological parameters associated with hypoxia, and orthogonal switches have been introduced in plants to trigger oxygen-specific responses. Upcoming applications are expected, such as genetic tailoring of oxygen-responsive traits, engineering of plant hypoxic metabolism and oxygen delivery to hypoxic tissues, and expansion of the repertoire of genetically encoded oxygen sensors.


Assuntos
Plantas , Biologia Sintética , Hipóxia , Oxigênio , Fenômenos Fisiológicos Vegetais , Plantas/genética
9.
New Phytol ; 229(1): 24-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943217

RESUMO

While traditionally hypoxia has been studied as a detrimental component of flooding stress, the last decade has flourished with studies reporting the involvement of molecular oxygen availability in plant developmental processes. Moreover, proliferating and undifferentiated cells from different plant tissues were found to reside in endogenously generated hypoxic niches. Thus, stress-associated acute hypoxia may be distinguished from constitutively generated chronic hypoxia. The Cys/Arg branch of the N-degron pathway assumes a central role in integrating oxygen levels resulting in proteolysis of transcriptional regulators that control different aspects of plant growth and development. As a target of this pathway, group VII of the Ethylene Response Factor (ERF-VII) family has emerged as a hub for the integration of oxygen dynamics in root development and during seedling establishment. Additionally, vegetative shoot meristem activity and reproductive transition were recently associated with oxygen availability via two novel substrates of the N-degron pathways: VERNALISATION 2 (VRN2) and LITTLE ZIPPER 2 (ZPR2). Together, these observations support roles for molecular oxygen as a signalling molecule in plant development, as well as in essential metabolic reactions. Here, we review recent findings regarding oxygen-regulated development, and discuss outstanding questions that spring from these discoveries.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Oxigênio/metabolismo , Desenvolvimento Vegetal
10.
Proc Natl Acad Sci U S A ; 115(51): E12101-E12110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509981

RESUMO

Plant response to environmental stimuli involves integration of multiple signals. Upon low-oxygen stress, plants initiate a set of adaptive responses to circumvent an energy crisis. Here, we reveal how these stress responses are induced by combining (i) energy-dependent changes in the composition of the acyl-CoA pool and (ii) the cellular oxygen concentration. A hypoxia-induced decline of cellular ATP levels reduces LONG-CHAIN ACYL-COA SYNTHETASE activity, which leads to a shift in the composition of the acyl-CoA pool. Subsequently, we show that different acyl-CoAs induce unique molecular responses. Altogether, our data disclose a role for acyl-CoAs acting in a cellular signaling pathway in plants. Upon hypoxia, high oleoyl-CoA levels provide the initial trigger to release the transcription factor RAP2.12 from its interaction partner ACYL-COA BINDING PROTEIN at the plasma membrane. Subsequently, according to the N-end rule for proteasomal degradation, oxygen concentration-dependent stabilization of the subgroup VII ETHYLENE-RESPONSE FACTOR transcription factor RAP2.12 determines the level of hypoxia-specific gene expression. This research unveils a specific mechanism activating low-oxygen stress responses only when a decrease in the oxygen concentration coincides with a drop in energy.


Assuntos
Acil Coenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Hipóxia Celular , Inibidor da Ligação a Diazepam/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oxigênio/metabolismo , Transdução de Sinais
11.
Plant Physiol ; 180(3): 1614-1628, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019003

RESUMO

Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.


Assuntos
Cisteína Dioxigenase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Populus/metabolismo , Zinco/metabolismo , Adaptação Fisiológica/genética , Anaerobiose , Biodegradação Ambiental , Cisteína Dioxigenase/genética , Regulação da Expressão Gênica de Plantas , Espaço Intracelular/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Populus/genética
12.
Plant Physiol ; 179(3): 986-1000, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30459266

RESUMO

Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.


Assuntos
Arabidopsis/metabolismo , Técnicas Biossensoriais/métodos , Oxigênio/química , Animais , Arabidopsis/genética , Hipóxia Celular , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética/métodos , Hidroxilação , Oxigênio/metabolismo , Transdução de Sinais , Biologia Sintética , Fatores de Transcrição
13.
Genesis ; 57(9): e23307, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140735

RESUMO

Axillary meristems (AMs) contribute to the growth of a plant, determining adult architecture and reproductive success in response to environmental stimuli. The missing flowers (mf) mutant of sunflower (Helianthus annuus) is defective in AM development. mf lacks shoot branching and ray flowers, occasionally producing few disk flowers. Here we demonstrated that a point mutation in the REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE (Ha-ROXL) gene of mf generates a premature stop codon and therefore a nonfunctional bHLH transcription factor, no longer localized in the nucleus, where it should exert its function. Virus-induced gene silencing of Ha-ROXL also causes defects in disk and ray flower development. Ha-ROXL mRNA accumulates at the adaxial boundaries of leaves and AMs. During inflorescence development, Ha-ROXL is expressed in small arcs of cells before a clear separation between abaxial bracts and disk flower primordia. No Ha-ROXL mRNA accumulates in mf inflorescences. Several genes known to play roles in plant architecture, auxin transport, and flower development are differentially expressed in mf and Ha-ROXL-silenced plants. These results highlight the predominant role of Ha-ROXL in regulating AMs in sunflower. In dicot, mf is the first mutant for which the ROXL gene is also required for initiation of flower meristems.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas , Helianthus/genética , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Helianthus/crescimento & desenvolvimento , Mutação Puntual
14.
J Exp Bot ; 70(20): 5839-5851, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31384925

RESUMO

Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.


Assuntos
Aminoácidos/biossíntese , Etanol/metabolismo , Herbicidas/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fermentação/efeitos dos fármacos , Fermentação/genética , Fermentação/fisiologia , Fatores de Transcrição/genética
15.
J Exp Bot ; 70(6): 1815-1827, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30861072

RESUMO

Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.


Assuntos
Álcool Desidrogenase/metabolismo , Evolução Biológica , Embriófitas/metabolismo , Etanol/metabolismo , Fermentação , Piruvato Descarboxilase/metabolismo , Embriófitas/enzimologia
16.
Plant Cell Environ ; 40(10): 2333-2346, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741696

RESUMO

The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Fenótipo , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Deleção de Sequência
17.
PLoS Biol ; 12(9): e1001950, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25226037

RESUMO

Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen-sensing mechanism in plants opens new perspectives for breeding flood-resistant crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oxigênio/farmacologia , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA , Retroalimentação Fisiológica , Oxigênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
18.
Nature ; 479(7373): 419-22, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020282

RESUMO

The majority of eukaryotic organisms rely on molecular oxygen for respiratory energy production. When the supply of oxygen is compromised, a variety of acclimation responses are activated to reduce the detrimental effects of energy depletion. Various oxygen-sensing mechanisms have been described that are thought to trigger these responses, but they each seem to be kingdom specific and no sensing mechanism has been identified in plants until now. Here we show that one branch of the ubiquitin-dependent N-end rule pathway for protein degradation, which is active in both mammals and plants, functions as an oxygen-sensing mechanism in Arabidopsis thaliana. We identified a conserved amino-terminal amino acid sequence of the ethylene response factor (ERF)-transcription factor RAP2.12 to be dedicated to an oxygen-dependent sequence of post-translational modifications, which ultimately lead to degradation of RAP2.12 under aerobic conditions. When the oxygen concentration is low-as during flooding-RAP2.12 is released from the plasma membrane and accumulates in the nucleus to activate gene expression for hypoxia acclimation. Our discovery of an oxygen-sensing mechanism opens up new possibilities for improving flooding tolerance in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Proteólise/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Aclimatação/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Sequência de Aminoácidos , Anaerobiose/efeitos dos fármacos , Proteínas de Arabidopsis/química , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Proteínas de Ligação a DNA , Inundações , Imersão , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fatores de Transcrição/química
19.
Plant Cell Environ ; 38(6): 1094-103, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25438831

RESUMO

Plants often experience low oxygen conditions as the consequence of reduced oxygen availability in their environment or due to a high activity of respiratory metabolism. Recently, an oxygen sensing pathway was described in Arabidopsis thaliana which involves the migration of an ERF transcription factor (RAP2.12) from the plasma membrane to the nucleus upon hypoxia. Moreover, RAP2.12 protein level is controlled through an oxygen-dependent branch of the N-end rule pathway for proteasomal degradation. Inside the nucleus, RAP2.12 induces the expression of genes involved in the adaptation to reduced oxygen availability. In the present study, we describe the oxygen concentration and time-resolved characterization of RAP2.12 activity. A reduction of the oxygen availability to half the concentration in normal air is sufficient to trigger RAP2.12 relocalization into the nucleus, while nuclear accumulation correlates with the first induction of the molecular response to hypoxia. Nuclear presence of RAP2.12 may not only depend on relocalization of existing protein, but involves de novo synthesis of the transcription factor as well. After re-oxygenation of the tissue, degradation of RAP2.12 in the nucleus was observed within 3 h, concomitant with reduction in hypoxia responsive gene transcripts to normoxic levels.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Núcleo Celular/química , Fatores de Transcrição/química , Anaerobiose/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Hipóxia Celular/fisiologia , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA , Microscopia Confocal , Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/fisiologia
20.
Bioinformatics ; 29(6): 717-24, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376351

RESUMO

MOTIVATION: Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. They have been used for hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. So far, the main platform for expression data has been DNA microarrays; however, the recent development of RNA-seq allows for higher accuracy and coverage of transcript populations. It is therefore important to assess the potential for biological investigation of coexpression networks derived from this novel technique in a condition-independent dataset. RESULTS: We collected 65 publicly available Illumina RNA-seq high quality Arabidopsis thaliana samples and generated Pearson correlation coexpression networks. These networks were then compared with those derived from analogous microarray data. We show how Variance-Stabilizing Transformed (VST) RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture. Microarray networks show a slightly higher score in biology-derived quality assessments such as overlap with the known protein-protein interaction network and edge ontological agreement. Different coexpression network centralities are investigated; in particular, we show how betweenness centrality is generally a positive marker for essential genes in A.thaliana, regardless of the platform originating the data. In the end, we focus on a specific gene network case, showing that although microarray data seem more suited for gene network reverse engineering, RNA-seq offers the great advantage of extending coexpression analyses to the entire transcriptome.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência de RNA , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa