Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 177(1): 54-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22085677

RESUMO

We have generated human recombinant keratins K8 and K18 and describe conditions to quantitatively follow their assembly into filaments. When renatured individually from 8M urea into a low ionic strength/high pH-buffer, K8 was present in a dimeric to tetrameric form as revealed by analytical ultracentrifugation. In contrast, K18 sedimented as a monomer. When mixed in 8 M urea and renatured together, K8 and K18 exhibited s-value profiles compatible with homogeneous tetrameric complexes. This finding was confirmed by sedimentation equilibrium centrifugation. Subsequently, these tetrameric starter units were subjected to assembly experiments at various protein concentrations. At low values such as 0.0025 g/l, unit-length filaments were abundantly present after 2s of assembly. During the following 5 min, filaments grew rapidly and by measuring the length of individual filaments we were able to generate time-dependent length profiles. These data revealed that keratins K8/K18 assemble several times faster than vimentin and desmin. In addition, we determined the persistence length l(p) of K8/K18 filaments to be in the range of 300 nm. Addition of 1 mM MgCl(2) increases l(p) to 480 nm indicating that magnesium ions affect the interaction of keratin subunits within the filament during assembly to some extent.


Assuntos
Citoesqueleto/química , Queratina-18/química , Queratina-8/química , Desmina/química , Humanos , Queratina-18/genética , Queratina-8/genética , Cinética , Microscopia Eletrônica/métodos , Proteínas Recombinantes/química , Vimentina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa