Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824328

RESUMO

Pipe elbow joints exist in almost every piping system supporting many important applications such as clean water supply. However, spatial information of the elbow joints is rarely extracted and analyzed from observations such as point cloud data obtained from laser scanning due to lack of a complete geometric model that can be applied to different types of joints. In this paper, we proposed a novel geometric model and several model adaptions for typical elbow joints including the 90° and 45° types, which facilitates the use of 3D point clouds of the elbow joints collected from laser scanning. The model comprises translational, rotational, and dimensional parameters, which can be used not only for monitoring the joints' geometry but also other applications such as point cloud registrations. Both simulated and real datasets were used to verify the model, and two applications derived from the proposed model (point cloud registration and mounting bracket detection) were shown. The results of the geometric fitting of the simulated datasets suggest that the model can accurately recover the geometry of the joint with very low translational (0.3 mm) and rotational (0.064°) errors when ±0.02 m random errors were introduced to coordinates of a simulated 90° joint (with diameter equal to 0.2 m). The fitting of the real datasets suggests that the accuracy of the diameter estimate reaches 97.2%. The joint-based registration accuracy reaches sub-decimeter and sub-degree levels for the translational and rotational parameters, respectively.

2.
Sensors (Basel) ; 19(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917502

RESUMO

As laser scanning technology has improved a lot in recent years, terrestrial laser scanners (TLS) have become popular devices for surveying tasks with high accuracy demands, such as deformation analyses. For this reason, finding a stochastic model for TLS measurements is very important in order to get statistically reliable results. The measurement accuracy of laser scanners-especially of their rangefinders-is strongly dependent on the scanning conditions, such as the scan configuration, the object surface geometry and the object reflectivity. This study demonstrates a way to determine the intensity-dependent range precision of 3D points for terrestrial laser scanners that measure in 3D mode by using range residuals in laser beam direction of a best plane fit. This method does not require special targets or surfaces aligned perpendicular to the scanner, which allows a much quicker and easier determination of the stochastic properties of the rangefinder. Furthermore, the different intensity types-raw and scaled-intensities are investigated since some manufacturers only provide scaled intensities. It is demonstrated that the intensity function can be derived from raw intensity values as written in literature, and likewise-in a restricted measurement volume-from scaled intensity values if the raw intensities are not available.

3.
Sensors (Basel) ; 18(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518062

RESUMO

Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites.

4.
Sensors (Basel) ; 18(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30060589

RESUMO

Measuring the volume of bird eggs is a very important task for the poultry industry and ornithological research due to the high revenue generated by the industry. In this paper, we describe a prototype of a new metrological system comprising a 3D range camera, Microsoft Kinect (Version 2) and a point cloud post-processing algorithm for the estimation of the egg volume. The system calculates the egg volume directly from the egg shape parameters estimated from the least-squares method in which the point clouds of eggs captured by the Kinect are fitted to novel geometric models of an egg in a 3D space. Using the models, the shape parameters of an egg are estimated along with the egg's position and orientation simultaneously under the least-squares criterion. Four sets of experiments were performed to verify the functionality and the performance of the system, while volumes estimated from the conventional water displacement method and the point cloud captured by a survey-grade laser scanner serve as references. The results suggest that the method is straightforward, feasible and reliable with an average egg volume estimation accuracy 93.3% when compared to the reference volumes. As a prototype, the software part of the system was implemented in a post-processing mode. However, as the proposed processing techniques is computationally efficient, the prototype can be readily transformed into a real-time egg volume system.


Assuntos
Algoritmos , Aves , Tamanho Celular , Sistemas Computacionais , Ovos , Software , Animais , Feminino , Aves Domésticas
5.
Sensors (Basel) ; 13(6): 7224-49, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23727956

RESUMO

Terrestrial laser scanners are sophisticated instruments that operate much like high-speed total stations. It has previously been shown that unmodelled systematic errors can exist in modern terrestrial laser scanners that deteriorate their geometric measurement precision and accuracy. Typically, signalised targets are used in point-based self-calibrations to identify and model the systematic errors. Although this method has proven its effectiveness, a large quantity of signalised targets is required and is therefore labour-intensive and limits its practicality. In recent years, feature-based self-calibration of aerial, mobile terrestrial, and static terrestrial laser scanning systems has been demonstrated. In this paper, the commonalities and differences between point-based and plane-based self-calibration (in terms of model identification and parameter correlation) are explored. The results of this research indicate that much of the knowledge from point-based self-calibration can be directly transferred to plane-based calibration and that the two calibration approaches are nearly equivalent. New network configurations, such as the inclusion of tilted scans, were also studied and prove to be an effective means for strengthening the self-calibration solution, and improved recoverability of the horizontal collimation axis error for hybrid scanners, which has always posed a challenge in the past.

6.
Sensors (Basel) ; 12(11): 14416-41, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23202168

RESUMO

The automatic interpretation of human gestures can be used for a natural interaction with computers while getting rid of mechanical devices such as keyboards and mice. In order to achieve this objective, the recognition of hand postures has been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem, even with the use of 2D images. The objective of the current study was to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. A heuristic and voxel-based signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process, the tracking procedure and the segmentation algorithm have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 93.88% recognition rate after testing 14,732 samples of 12 postures taken from the alphabet of the American Sign Language.


Assuntos
Fotografação , Língua de Sinais , Algoritmos , Mãos/fisiologia , Humanos , Estados Unidos
7.
IEEE Trans Med Imaging ; 39(6): 2051-2060, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31902759

RESUMO

Fluoroscopic imaging that captures X-ray images at video framerates is advantageous for guiding catheter insertions by vascular surgeons and interventional radiologists. Visualizing the dynamical movements non-invasively allows complex surgical procedures to be performed with less trauma to the patient. To improve surgical precision, endovascular procedures can benefit from more accurate fluoroscopy data via calibration. This paper presents a robust self-calibration algorithm suitable for single-plane and dual-plane fluoroscopy. A three-dimensional (3D) target field was imaged by the fluoroscope in a strong geometric network configuration. The unknown 3D positions of targets and the fluoroscope pose were estimated simultaneously by maximizing the likelihood of the Student-t probability distribution function. A smoothed k-nearest-neighbour (kNN) regression is then used to model the deterministic component of the image reprojection error of the robust bundle adjustment. The Maximum Likelihood Estimation step and the kNN regression step are then repeated iteratively until convergence. Four different error modeling schemes were compared while varying the quantity of training images. It was found that using a smoothed kNN regression can automatically model the systematic errors in fluoroscopy with similar accuracy as a human expert using a small training dataset. When all training images were used, the 3D mapping error was reduced from 0.61-0.83 mm to 0.04 mm post-calibration (94.2-95.7% improvement), and the 2D reprojection error was reduced from 1.17-1.31 to 0.20-0.21 pixels (83.2-83.8% improvement). When using biplanar fluoroscopy, the 3D measurement accuracy of the system improved from 0.60 mm to 0.32 mm (47.2% improvement).


Assuntos
Algoritmos , Imageamento Tridimensional , Calibragem , Fluoroscopia , Humanos , Aprendizado de Máquina Supervisionado , Raios X
8.
IEEE Trans Pattern Anal Mach Intell ; 31(4): 577-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19229076

RESUMO

We present a novel closed-form expression of positional uncertainty measured by a near-monostatic and time-of-flight laser range finder with consideration of its measurement uncertainties. An explicit form of the angular variance of the estimated surface normal vector is also derived. This expression is useful for the precise estimation of the surface normal vector and the outlier detection for finding correspondence in order to register multiple three-dimensional point clouds. Two practical algorithms using these expressions are presented: a method for finding optimal local neighbourhood size which minimizes the variance of the estimated normal vector and a resampling method of point clouds.

9.
IEEE Trans Med Imaging ; 34(2): 589-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25330483

RESUMO

High-speed dual fluoroscopy is a noninvasive imaging technology for three-dimensional skeletal kinematics analysis that finds numerous biomechanical applications. Accurate reconstruction of bone translations and rotations from dual-fluoroscopic data requires accurate calibration of the imaging geometry and the many imaging distortions that corrupt the data. Direct linear transformation methods are commonly applied for performing calibration using a two-step process that suffers from a number of potential shortcomings including that each X-ray source and corresponding camera must be calibrated separately. Consequently, the true imaging set-up and the constraints it presents are not incorporated during calibration. A method to overcome such drawbacks is the single-step self-calibrating bundle adjustment method. This procedure, based on the collinearity principle augmented with imaging distortion models and geometric constraints, has been developed and is reported herein. Its efficacy is shown with a carefully controlled experiment comprising 300 image pairs with 48 507 image points. Application of all geometric constraints and a 31 parameter distortion model resulted in up to 91% improvement in terms of precision (model fit) and up to 71% improvement in terms of 3-D point reconstruction accuracy (0.3-0.4 mm). The accuracy of distance reconstruction was improved from 0.3±2.0 mm to 0.2 ±1.1 mm and angle reconstruction accuracy was improved from -0.03±0.55(°) to 0.01±0.06(°). Such positioning accuracy will allow for the accurate quantification of in vivo arthrokinematics crucial for skeletal biomechanics investigations.


Assuntos
Fluoroscopia/métodos , Imageamento Tridimensional/métodos , Fenômenos Biomecânicos , Calibragem , Fluoroscopia/instrumentação , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa