Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
2.
PLoS Genet ; 12(5): e1006012, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168520

RESUMO

Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium/genética , Tetraploidia , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fibra de Algodão , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Poliploidia
3.
G3 (Bethesda) ; 3(10): 1809-18, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23979935

RESUMO

Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium raimondii) genomes. We conducted a comparative analysis using deep re-sequencing of multiple accessions of each diploid species and identified 24 million SNPs between the A-diploid and D-diploid genomes. These analyses facilitated the construction of a robust index of conserved SNPs between the A-genomes and D-genomes at all detected polymorphic loci. This index is widely applicable for read mapping efforts of other diploid and allopolyploid Gossypium accessions. Further analysis also revealed locations of putative duplications and deletions in the A-genome relative to the D-genome reference sequence. The approximately 25,400 deleted regions included more than 50% deletion of 978 genes, including many involved with starch synthesis. In the polyploid genome, we also detected 1,472 conversion events between homoeologous chromosomes, including events that overlapped 113 genes. Continued characterization of the Gossypium genomes will further enhance our ability to manipulate fiber and agronomic production of cotton.


Assuntos
Diploide , Evolução Molecular , Genoma de Planta , Gossypium/genética , Poliploidia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa