Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(26): e2214842120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339216

RESUMO

Transplantation of stem cell-derived retinal pigment epithelial (RPE) cells is considered a viable therapeutic option for age-related macular degeneration (AMD). Several landmark Phase I/II clinical trials have demonstrated safety and tolerability of RPE transplants in AMD patients, albeit with limited efficacy. Currently, there is limited understanding of how the recipient retina regulates the survival, maturation, and fate specification of transplanted RPE cells. To address this, we transplanted stem cell-derived RPE into the subretinal space of immunocompetent rabbits for 1 mo and conducted single-cell RNA sequencing analyses on the explanted RPE monolayers, compared to their age-matched in vitro counterparts. We observed an unequivocal retention of RPE identity, and a trajectory-inferred survival of all in vitro RPE populations after transplantation. Furthermore, there was a unidirectional maturation toward the native adult human RPE state in all transplanted RPE, regardless of stem cell resource. Gene regulatory network analysis suggests that tripartite transcription factors (FOS, JUND, and MAFF) may be specifically activated in posttransplanted RPE cells, to regulate canonical RPE signature gene expression crucial for supporting host photoreceptor function, and to regulate prosurvival genes required for transplanted RPE's adaptation to the host subretinal microenvironment. These findings shed insights into the transcriptional landscape of RPE cells after subretinal transplantation, with important implications for cell-based therapy for AMD.


Assuntos
Degeneração Macular , Transcriptoma , Adulto , Animais , Humanos , Coelhos , Degeneração Macular/genética , Degeneração Macular/terapia , Células-Tronco , Células Epiteliais , Pigmentos da Retina
2.
Hum Mol Genet ; 32(9): 1466-1482, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36519761

RESUMO

Abnormal lipid homeostasis has been observed in the brain of Parkinson's disease (PD) patients and experimental models, although the mechanism underlying this phenomenon is unclear. Notably, previous studies have reported that the PD-linked protein Parkin functionally interacts with important lipid regulators, including Sterol Regulatory Element-Binding Proteins (SREBPs) and cluster of differentiation 36 (CD36). Here, we demonstrate a functional relationship between Parkin and lipoprotein lipase (LPL), a triglyceride lipase that is widely expressed in the brain. Using a human neuroblastoma cell line and a Parkin knockout mouse model, we demonstrate that Parkin expression level positively correlates with neuronal LPL protein level and activity. Importantly, our study identified SREBP2, a major regulator of sterol and fatty acid synthesis, as a potential mediator between Parkin and LPL. Supporting this, SREBP2 genetic ablation abolished Parkin effect on LPL expression. We further demonstrate that Parkin-LPL pathway regulates the formation of intracellular lipid droplets, and that this pathway is upregulated upon exposure to PD-linked oxidative stress induced by rotenone. Finally, we show that inhibition of either LPL or SREBP2 exacerbates rotenone-induced cell death. Taken together, our findings reveal a novel pathway linking Parkin, SREBP2 and LPL in neuronal lipid homeostasis that may be relevant to the pathogenesis of PD.


Assuntos
Lipase Lipoproteica , Doença de Parkinson , Proteína de Ligação a Elemento Regulador de Esterol 2 , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Homeostase , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Rotenona/efeitos adversos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
EMBO Rep ; 23(12): e55191, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36256516

RESUMO

Autophagy has emerged as the prime machinery for implementing organelle quality control. In the context of mitophagy, the ubiquitin E3 ligase Parkin tags impaired mitochondria with ubiquitin to activate autophagic degradation. Although ubiquitination is essential for mitophagy, it is unclear how ubiquitinated mitochondria activate autophagosome assembly locally to ensure efficient destruction. Here, we report that Parkin activates lipid remodeling on mitochondria targeted for autophagic destruction. Mitochondrial Parkin induces the production of phosphatidic acid (PA) and its subsequent conversion to diacylglycerol (DAG) by recruiting phospholipase D2 and activating the PA phosphatase, Lipin-1. The production of DAG requires mitochondrial ubiquitination and ubiquitin-binding autophagy receptors, NDP52 and optineurin (OPTN). Autophagic receptors, via Golgi-derived vesicles, deliver an autophagic activator, EndoB1, to ubiquitinated mitochondria. Inhibition of Lipin-1, NDP52/OPTN, or EndoB1 results in a failure to produce mitochondrial DAG, autophagosomes, and mitochondrial clearance, while exogenous cell-permeable DAG can induce autophagosome production. Thus, mitochondrial DAG production acts downstream of Parkin to enable the local assembly of autophagosomes for the efficient disposal of ubiquitinated mitochondria.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Lipídeos
4.
Arterioscler Thromb Vasc Biol ; 43(3): 427-442, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700429

RESUMO

BACKGROUND: Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS: We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS: Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS: These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Camundongos , Animais , Cloreto de Sódio na Dieta/efeitos adversos , Proteômica , Mecanotransdução Celular , Pressão Sanguínea/fisiologia
5.
Hum Mol Genet ; 30(1): 5-20, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33395696

RESUMO

FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Transtornos Neurológicos da Marcha/genética , Síndrome da Deleção Distal 11q de Jacobsen/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Transporte Axonal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Síndrome da Deleção Distal 11q de Jacobsen/fisiopatologia , Locomoção/genética , Locomoção/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurogênese/genética , Ratos
6.
J Neuroinflammation ; 20(1): 185, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543564

RESUMO

Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio
7.
Cell Mol Life Sci ; 79(12): 599, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409355

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by selective and progressive dopamine (DA) neuron loss in the substantia nigra and other brain regions, with the presence of Lewy body formation. Most PD cases are sporadic, whereas monogenic forms of PD have been linked to multiple genes, including Leucine kinase repeat 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two protein kinase genes involved in multiple signaling pathways. There is increasing evidence to suggest that endogenous DA and DA-dependent neurodegeneration have a pathophysiologic role in sporadic and familial PD. METHODS: We generated patient-derived dopaminergic neurons and human midbrain-like organoids (hMLOs), transgenic (TG) mouse and Drosophila models, expressing both mutant and wild-type (WT) LRRK2 and PINK1. Using these models, we examined the effect of LRRK2 and PINK1 on tyrosine hydroxylase (TH)-DA pathway. RESULTS: We demonstrated that PD-linked LRRK2 mutations were able to modulate TH-DA pathway, resulting in up-regulation of DA early in the disease which subsequently led to neurodegeneration. The LRRK2-induced DA toxicity and degeneration were abrogated by wild-type (WT) PINK1 (but not PINK1 mutations), and early treatment with a clinical-grade drug, α-methyl-L-tyrosine (α-MT), a TH inhibitor, was able to reverse the pathologies in human neurons and TG Drosophila models. We also identified opposing effects between LRRK2 and PINK1 on TH expression, suggesting that functional balance between these two genes may regulate the TH-DA pathway. CONCLUSIONS: Our findings highlight the vital role of the TH-DA pathway in PD pathogenesis. LRRK2 and PINK1 have opposing effects on the TH-DA pathway, and its balance affects DA neuron survival. LRRK2 or PINK1 mutations can disrupt this balance, promoting DA neuron demise. Our findings provide support for potential clinical trials using TH-DA pathway inhibitors in early or prodromic PD.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Camundongos , Animais , Humanos , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Doença de Parkinson/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768843

RESUMO

Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Doença de Parkinson/terapia , Mesencéfalo , Neurônios Dopaminérgicos , Organoides
9.
Ann Neurol ; 90(3): 490-505, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288055

RESUMO

OBJECTIVE: We utilized human midbrain-like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α-synuclein (α-syn; SNCA) perturbations to investigate genotype-to-phenotype relationships in Parkinson disease, with the particular aim of recapitulating α-syn- and Lewy body-related pathologies and the process of neurodegeneration in the hMLO model. METHODS: We generated and characterized hMLOs from GBA1-/- and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body-like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol-b-epoxide-treated SNCA triplication hMLOs. RESULTS: We identified for the first time that the loss of glucocerebrosidase, coupled with wild-type α-syn overexpression, results in a substantial accumulation of detergent-resistant, ß-sheet-rich α-syn aggregates and Lewy body-like inclusions in hMLOs. These Lewy body-like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α-syn with ubiquitin, and can also be formed in Parkinson disease patient-derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body-like inclusions in hMLOs derived from patients carrying the SNCA triplication. INTERPRETATION: Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild-type α-syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490-505.


Assuntos
Glucosilceramidase/deficiência , Corpos de Lewy/metabolismo , Mesencéfalo/metabolismo , Mutação/fisiologia , Organoides/metabolismo , alfa-Sinucleína/biossíntese , Células-Tronco Embrionárias/metabolismo , Glucosilceramidase/genética , Humanos , Corpos de Lewy/genética , Corpos de Lewy/patologia , Mesencéfalo/patologia , Organoides/patologia , alfa-Sinucleína/genética
10.
Nat Chem Biol ; 16(8): 876-886, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451509

RESUMO

The orphan nuclear receptor Nurr1 is critical for the development, maintenance and protection of midbrain dopaminergic (mDA) neurons. Here we show that prostaglandin E1 (PGE1) and its dehydrated metabolite, PGA1, directly interact with the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional function. We also report the crystallographic structure of Nurr1-LBD bound to PGA1 at 2.05 Å resolution. PGA1 couples covalently to Nurr1-LBD by forming a Michael adduct with Cys566, and induces notable conformational changes, including a 21° shift of the activation function-2 helix (H12) away from the protein core. Furthermore, PGE1/PGA1 exhibit neuroprotective effects in a Nurr1-dependent manner, prominently enhance expression of Nurr1 target genes in mDA neurons and improve motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse models of Parkinson's disease. Based on these results, we propose that PGE1/PGA1 represent native ligands of Nurr1 and can exert neuroprotective effects on mDA neurons, via activation of Nurr1's transcriptional function.


Assuntos
Alprostadil/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Prostaglandinas A/metabolismo , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Dopamina/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Ligação Proteica , Ratos , Transdução de Sinais , Transcrição Gênica
11.
Neurobiol Dis ; 161: 105560, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767944

RESUMO

Emerging studies implicate energy dysregulation as an underlying trigger for Parkinson's disease (PD), suggesting that a better understanding of the molecular pathways governing energy homeostasis could help elucidate therapeutic targets for the disease. A critical cellular energy regulator is AMP kinase (AMPK), which we have previously shown to be protective in PD models. However, precisely how AMPK function impacts on dopaminergic neuronal survival and disease pathogenesis remains elusive. Here, we showed that Drosophila deficient in AMPK function exhibits PD-like features, including dopaminergic neuronal loss and climbing impairment that progress with age. We also created a tissue-specific AMPK-knockout mouse model where the catalytic subunits of AMPK are ablated in nigral dopaminergic neurons. Using this model, we demonstrated that loss of AMPK function promotes dopaminergic neurodegeneration and associated locomotor aberrations. Accompanying this is an apparent reduction in the number of mitochondria in the surviving AMPK-deficient nigral dopaminergic neurons, suggesting that an impairment in mitochondrial biogenesis may underlie the observed PD-associated phenotypes. Importantly, the loss of AMPK function enhances the susceptibility of nigral dopaminergic neurons in these mice to 6-hydroxydopamine-induced toxicity. Notably, we also found that AMPK activation is reduced in post-mortem PD brain samples. Taken together, these findings highlight the importance of neuronal energy homeostasis by AMPK in PD and position AMPK pathway as an attractive target for future therapeutic exploitation.


Assuntos
Adenilato Quinase , Neurônios Dopaminérgicos , Doença de Parkinson , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Fenótipo , Substância Negra/metabolismo
12.
Hum Mol Genet ; 28(23): 3982-3996, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626293

RESUMO

Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson's disease, but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss-of-function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Membrana Nuclear/metabolismo , Doença de Parkinson/genética , Animais , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Mutação com Perda de Função , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Ratos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
13.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30104344

RESUMO

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Locomoção , Óxido Nítrico/química , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Transgênicos
14.
Chembiochem ; 20(12): 1487-1497, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30664830

RESUMO

Monoamine oxidases (MAOs) are the enzymes that catalyze the oxidation of monoamines, such as dopamine, norepinephrine, and serotonin, which serve as key neurotransmitters in the central nervous system (CNS). MAOs play important roles in maintaining the homeostasis of monoamines, and the aberrant expression or activation of MAOs underlies the pathogenesis of monoamine neurotransmitter disorders, including neuropsychiatric and neurodegenerative diseases. Clearly, detecting and inhibiting the activities of MAOs is of great value for the diagnosis and therapeutics of these diseases. Accordingly, many specific detection probes and inhibitors have been developed and substantially contributed to basic and clinical studies of these diseases. In this review, progress in the detecting and inhibiting of MAOs and their applications in mechanism exploration and treatment of neurotransmitter-related disorders is summarized. Notably, how the detection probes and inhibitors of MAOs were developed has been specifically addressed. It is hoped that this review will benefit the design of more effective and sensitive probes and inhibitors for MAOs, and eventually the treatment of monoamine neurotransmitter disorders.


Assuntos
Doenças do Sistema Nervoso Central , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase , Animais , Monoaminas Biogênicas/metabolismo , Células Cultivadas , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Monoaminoxidase/química , Monoaminoxidase/fisiologia
15.
EMBO Rep ; 18(6): 864-865, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28515082

RESUMO

Although the Parkin/PINK1 pathway has received considerable attention in recent years as a key regulator of mitophagy in mammals, it is important to recognize that multiple mitophagy receptors like BNIP3, NIX, and FUNDC1 exist that can promote the selective clearance of mitochondria in the absence of Parkin. In this issue, Bhujabal et al expand the repertoire of Parkin-independent mitophagy receptors to include the anti-apoptotic protein, FKBP8. The authors demonstrate that FKBP8 interacts preferentially with LC3A via its LIR motif to destroy damaged mitochondria. During the process, FKBP8 escapes from the destruction presumably to prevent apoptosis during mitophagy [1].


Assuntos
Mitofagia , Ubiquitina-Proteína Ligases , Animais , Apoptose , Mitocôndrias
16.
Arterioscler Thromb Vasc Biol ; 38(10): 2396-2409, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354219

RESUMO

Objective- Vascular endothelial dysfunction is a key component of several major human diseases, but the molecular basis of this complex disorder has been difficult to determine in vivo. Previous attempts to identify key mediators of vascular endothelial dysfunction in experimental models have been limited by the lack of suitable methods for system-wide analyses of vascular bed biology. Here, we aimed to develop a novel method for investigating vascular endothelial dysfunction pathogenesis that enables system-wide analyses of molecular interactions between endothelial glycocalyx, endothelial cells, and smooth muscle cells in murine. Approach and Results- We developed a new technique using whole-body differential perfusion with increasing concentrations of detergent buffer to selectively solubilize distinct layers of vascular bed tissue in rodents. When combined with proteomics techniques, our novel approach of differential systemic decellularization in vivo enabled quantitative profiling of vascular beds throughout the body. Initial perfusion with phosphate buffer was used to obtain the endothelial glycocalyx, followed by subsequent extraction of endothelial cell components, and finally by smooth muscle cell constituents with increasing concentrations of detergent. Differential systemic decellularization in vivo has also been successfully applied to characterize molecular events in the vascular bed pathology of lipopolysaccharide-challenged mice. Conclusions- Together, these data indicate that differential systemic decellularization in vivo permits system-wide molecular characterization of vascular bed proteomes in rodent models and can be used to advance our current understanding of vascular endothelial dysfunction pathogenesis and progression in a wide range of disease settings.


Assuntos
Aorta Torácica/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Endotoxemia/metabolismo , Perfusão/métodos , Proteoma , Proteômica/métodos , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotoxemia/induzido quimicamente , Endotoxemia/patologia , Endotoxemia/fisiopatologia , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Reprodutibilidade dos Testes
17.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1308-1317, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28433685

RESUMO

Parkin/PINK1-mediated mitophagy is implicated in the pathogenesis of Parkinson's disease (PD). Prior to elimination of damaged mitochondria, Parkin translocates to mitochondria and induces mitochondrial clustering. While the mechanism of PINK1-dependent Parkin redistribution to mitochondria is now becoming clear, the role of mitochondrial clustering has been less well understood. In our study, we found that loss of p62 disrupted mitochondrial aggregation and specifically sensitized Parkin-expressing cells to apoptosis induced by mitochondrial depolarization. Notably, altering mitochondrial aggregation through regulating p62 or other methods was sufficient to affect such apoptosis. Moreover, disruption of mitochondrial aggregation promoted proteasome-dependent degradation of outer mitochondrial membrane (OMM) proteins. The accelerated degradation in turn facilitated cytochrome c release from mitochondria, leading to apoptosis. Together, our study demonstrates a protective role of mitochondrial clustering in mitophagy and helps in understanding how aggregation defends cells against stress.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteína Sequestossoma-1/metabolismo , Citocromos c/metabolismo , Células HEK293 , Células HeLa , Humanos , Membranas Mitocondriais/metabolismo , Mitofagia , Proteólise , Proteína Sequestossoma-1/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Angew Chem Int Ed Engl ; 58(27): 9262-9268, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087740

RESUMO

Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real-time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative in situ tracking of retrograde transport neurons with single-particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra-axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.


Assuntos
Nanopartículas Metálicas/química , Proteínas Motores Moleculares/metabolismo , Neurônios/metabolismo , Animais , Axônios/química , Axônios/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Reprogramação Celular , Dineínas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Raios Infravermelhos , Camundongos , Microscopia de Fluorescência , Neurônios/citologia , Transporte Proteico , Ratos
19.
J Biol Chem ; 292(40): 16697-16708, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28848050

RESUMO

Defective mitophagy linked to dysfunction in the proteins Parkin and PTEN-induced putative kinase 1 (PINK1) is implicated in the pathogenesis of Parkinson's disease. Although the mechanism by which Parkin mediates mitophagy in a PINK1-dependent manner is becoming clearer, the triggers for this mitophagy pathway remain elusive. Reactive oxygen species (ROS) have been suggested as such triggers, but this proposal remains controversial because ROS scavengers fail to retard mitophagy. Here we demonstrate that the role of ROS in mitophagy has been underappreciated as a result of the inefficiency of ROS scavengers to control ROS bursts after high-dose treatment with carbonyl cyanide m-chlorophenylhydrazone. Supporting this, combinatorial treatment with N-acetyl-l-cysteine and catalase substantially inhibited the ROS upsurge and PINK1-dependent Parkin translocation to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone treatment. In addition to the chemical mitophagy inducer, overexpression of voltage-dependent anion channel 1 (VDAC1) induced Parkin translocation to mitochondria, presumably by stimulating ROS generation. Similarly, combined N-acetyl-l-cysteine and catalase treatment also suppressed VDAC1-induced redistribution of Parkin. Alongside these observations, we also found that the elevated protein level of PINK1 was not necessary for Parkin translocation to mitochondria. Thus, our data suggest that ROS may act as a trigger for the induction of Parkin/PINK1-dependent mitophagy. In addition, our study casts doubt on the importance of protein quantity of PINK1 in the recruitment of Parkin to mitochondria.


Assuntos
Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Células HeLa , Humanos , Mitocôndrias/genética , Mitofagia/efeitos dos fármacos , Proteínas Quinases/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ubiquitina-Proteína Ligases/genética
20.
J Biol Chem ; 290(27): 16882-93, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25987559

RESUMO

The potential cellular function of the 53-kDa cytosolic form of PINK1 (PINK1-53) is often overlooked because of its rapid degradation by the proteasome upon its production. Although a number of recent studies have suggested various roles for PINK1-53, how this labile PINK1 species attains an adequate expression level to fulfil these roles remains unclear. Here we demonstrated that PINK1-53 is stabilized in the presence of enhanced Lys-63-linked ubiquitination and identified TRAF6-related NF-κB activation as a novel pathway involved in this. We further showed that a mimetic of PINK1-53 promotes mitophagy but, curiously, in apparently healthy mitochondria. We speculate that this "non-selective" form of mitophagy may potentially help to counteract the build-up of reactive oxygen species in cells undergoing oxidative stress and, as such, represent a cytoprotective response.


Assuntos
Citosol/enzimologia , Mitocôndrias/enzimologia , Mitofagia , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Motivos de Aminoácidos , Animais , Citosol/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/genética , Neurônios/enzimologia , Neurônios/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Estabilidade Proteica , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa