RESUMO
This study describes the evaluation of the effectiveness of different soil covers on the development, productivity, yield and metabolic content of patchouli oil (Pogostemon cablin) and its hydrolate. The agronomic experiments were carried out in the field, including four types of soil cover and six replications (4 x 6), using green cover (peanut), straw (crotalaria and millet straw), white plastic cover, and no mulch (weeding). After transplanting, the initial growth of seedlings was analyzed through weekly monitoring of plant height, stem diameter, and the number of leaves. At harvest time, the harvest yield (green mass) was performed. After drying the leaves, the oil and hydrolate were extracted by steam distillation and then the yield of patchouli oil was determined. Regarding the agronomic analyses, white plastic and straw coverage was superior to the other treatments, with higher plant heights, number of leaves, whereas the plastic and straw coverage was superior to the other treatments, with higher plant heights, number of leaves and green mass yield. The metabolic content was evaluated using High Resolution Mass Spectrometry (HRMS), and the chemical markers were identified through the analysis of the MS/MS fragmentation spectra and chemotaxonomic data. No significant differences were observed in the essential oils yields and their hydrolates and the intensities of the major ions found in the samples identified as chemical markers for the quality control of P. cablin.
Assuntos
Solo , Solo/química , Óleos de Plantas/química , Óleos de Plantas/análise , Lamiaceae/química , Lamiaceae/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Agricultura/métodos , Óleos Voláteis/análise , Óleos Voláteis/químicaRESUMO
There is an increasing need for developing a strategy to analyze the penetration of pesticides in cultures during postharvest control with minimal or no sample preparation. This study explores the combined use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) and tissue spray ionization mass spectrometry (TSI-MS) to investigate the penetration of thiabendazole (TBZ) in fruits, simulating a postharvest procedure. Slices of guava and apple were prepared, and an infrared laser beam was used, resulting in the ablation of TBZ directly ionized by electrospray and analyzed by mass spectrometry. The experiments were conducted for 5 days of fruit storage after TBZ administration to simulate a postharvest treatment. During postharvest treatment, TBZ is applied directly to the fruit peel after harvesting. Consequently, TBZ residues may remain on the peel if the consumer does not wash the fruit properly before its consumption. To evaluate the effectiveness of household washing procedures, TSI-MS was employed as a rapid and straightforward technique to monitor the remaining amount of TBZ in guava and apple peels following fruit washing. This study highlights the advantages of LAESI imaging for evaluating TBZ penetration in fruits. Moreover, the powerful capabilities of TSI-MS are demonstrated in monitoring and estimating TBZ residues after pesticide application, enabling the comprehensive unveiling of pesticide contaminants in fruits.
Assuntos
Praguicidas , Praguicidas/análise , Frutas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Tiabendazol/análiseRESUMO
Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.
RESUMO
The synthesis and phytotoxic activity of a series of tyrosol 1,2,3-triazole derivatives are reported herein. Target compounds were synthesized through the copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC), known as click reaction, and these were tested for phytotoxic activity on leaves of wild poinsettia (Euphorbia heterophylla), fleabane (Conyza sumatrensis), and tropical spiderwort (Commelina benghalensis). These are three highly noxious agricultural weeds that challenge available weed control methods, including the use of chemical herbicides. Twenty-five compounds were synthesized and tested. None of the compounds showed phytotoxic activity against C. benghalensis and C. sumatrensis, but almost all of them produced yellowing, bleaching, and necrosis on leaves of E. heterophylla. Two of the tyrosol 1,2,3-triazole derivatives produced more extensive lesions than those produced by the commercial herbicide diquat, used as a positive control (p ≤ 0.05). When applied on leaves of E. heterophylla, these compounds interfered with the stomatal conductance, net photosynthesis, internal carbon concentration, transpiration rate, water-use efficiency, and chlorophyll A and B contents. The interference of such compounds on such photosynthesis-related variables indicates that tyrosol 1,2,3-triazole derivatives may be capable of lowering the competitiveness of E. heterophylla and acting as additional tools for managing this competitive weed in agricultural lands.