Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Rep ; 37(4)2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28679650

RESUMO

Our study aimed at exploring the effects of miR-211 on the proliferation and apoptosis of lens epithelial cells in diabetic cataract mice by targetting NAD+-dependent histone deacetylase sirtulin 1 (SIRT1). Healthy male mice were assigned into normal and diabetic cataract groups. Blood glucose, lens turbidity, and apoptosis were measured. Lens epithelial cells were classified into the normal, blank, negative control (NC), miR-211 mimics, miR-211 inhibitors, siRNA-SIRT1, and miR-211 inhibitors + siRNA-SIRT1 groups. MiR-211, Bcl-2, Bax, p53, and SIRT1 expressions of each group were detected. Cell proliferation, cycle and apoptosis were tested by MTT assay and flow cytometry. MiR-211 can specifically bind to SIRT1 according to the luciferase system. SIRT1 protein concentration was strongly positive in normal mice and weakly positive in diabetic cataract mice. Apoptosis index of diabetic cataract mice was higher than the normal mice. Compared with normal mice, the expressions of miR-211, Bax, and p53 increased in diabetic cataract mice, while the Bcl-2 and SIRT1 expressions decreased. In comparison with the blank and NC groups, the expressions of miR-211, Bax, and p53 increased, while Bcl-2 and SIRT1 expressions decreased, and the proliferation decreased and apoptosis rate increased in the miR-211 mimics and siRNA-SIRT1 groups; the results were contradicting for the miR-211 inhibitor group. MiR-211 could promote apoptosis and inhibit proliferation of lens epithelial cells in diabetic cataract mice by targetting SIRT1.


Assuntos
Apoptose , Catarata/metabolismo , Proliferação de Células , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Cápsula do Cristalino/metabolismo , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Animais , Catarata/genética , Catarata/patologia , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Células Epiteliais/patologia , Proteínas do Olho/genética , Cápsula do Cristalino/patologia , Masculino , Camundongos , MicroRNAs/genética , Sirtuína 1/genética
2.
Oncotarget ; 8(39): 65009-65021, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029408

RESUMO

We investigated the effects of lentivirus-mediated RNAi targeting of Nogo Receptor (NgR) on the proliferation and survival of murine retinal ganglion cells (mRGCs) in vitro and in vivo. Cultured mRGCs and C57BL/6 male mice were divided into 4 experimental groups: blank, model [100 µM N-methyl-D-aspartate (NMDA)], nscRNA (100 µM NMDA+ nscRNA vectors) and siNgR (100 µM NMDA+ siNgR vectors). CCK-8 and flow cytometry analyses revealed that silencing NgR enhanced proliferation, cell cycling and survival of NMDA-treated mRGCs. H&E staining showed that NgR silencing enhanced mRGC cell density and reduced angiogenesis in NMDA-treated retinal tissues. TUNEL assays showed that mRGC apoptosis was significantly diminished by NgR silencing in NMDA-treated retinal tissues. Western blotting and qRT-PCR analysis in NMDA-treated mRGCs and murine retinal tissues revealed that NgR silencing resulted in downregulation of RhoA signaling (RhoA and ROCK2). Western blotting showed that levels of activated Bax and cleaved caspase 3 were decreased, while Bcl-2 and pro-caspase 3 were increased in NMDA-treated mRGCs and murine retinal tissues, which corroborated the decreased apoptosis. These findings indicate that NgR gene silencing increases proliferation and survival of mRGCs in NMDA-treated murine retinas, which suggests a potential for therapeutic application to preventing optic nerve damage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa