Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Am J Physiol Cell Physiol ; 323(2): C277-C288, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759440

RESUMO

The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and ß-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Túbulos Renais , Túbulos Renais Distais , Potenciais da Membrana , Néfrons , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio
2.
Am J Physiol Renal Physiol ; 322(1): F55-F67, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843409

RESUMO

We used whole cell recording to examine the renal outer medullary K+ channel (ROMK or Kir1.1) and epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2)/initial connecting tubule (iCNT) and in the cortical collecting duct (CCD) of kidney tubule-specific neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) knockout mice (Ks-Nedd4-2 KO) and floxed neural precursor cell-expressed developmentally downregulated 4-like (Nedd4l) mice (control). Tertiapin Q (TPNQ)-sensitive K+ currents (ROMK) were smaller in both the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on a normal diet than in control mice. Neither high dietary salt intake nor low dietary salt intake had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2 KO mice. In contrast, high dietary K+ intake (HK) increased, whereas low dietary K+ intake (LK) decreased TPNQ-sensitive K+ currents in floxed Nedd4l mice. However, the effects of dietary K+ intake on ROMK channel activity were absent in Ks-Nedd4-2 KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD. Moreover, TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on HK were similar to those of control mice on LK. Amiloride-sensitive Na+ currents in the DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2 KO mice than in floxed Nedd4l mice on a normal K+ diet. HK increased ENaC activity of the DCT2/iCNT only in control mice, but HK stimulated ENaC of the CCD in both control and Ks-Nedd4-2 KO mice. Moreover, the HK-induced increase in amiloride-sensitive Na+ currents was larger in Ks-Nedd4-2 KO mice than in control mice. Deletion of Nedd4-2 increased with no lysine kinase 1 expression and abolished HK-induced inhibition of with no lysine kinase 1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in the aldosterone-sensitive distal nephron and that HK fails to stimulate ROMK, but robustly increases ENaC activity in the CCD of Nedd4-2-deficient mice.NEW & NOTEWORTHY We demonstrate that renal outer medullary K+ (ROMK) channel activity is inhibited in the late distal convoluted tubule/initial connecting tubule and cortical collecting duct of neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2)-deficient mice. Also, deletion of Nedd4-2 abolishes the stimulatory effect of dietary K+ intake on ROMK. The lack of high K+-induced stimulation of ROMK is associated with the absence of high K+-induced inhibition of with no lysine kinase 1.


Assuntos
Aldosterona/farmacologia , Túbulos Renais Distais/efeitos dos fármacos , Ubiquitina-Proteína Ligases Nedd4/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio na Dieta/metabolismo , Animais , Dieta Hipossódica , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Potenciais da Membrana , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Cloreto de Sódio na Dieta/metabolismo
3.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870644

RESUMO

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Assuntos
Hipopotassemia , Simportadores de Cloreto de Sódio , Animais , Humanos , Camundongos , Cloretos/metabolismo , Células HEK293 , Hipopotassemia/genética , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo
4.
Curr Opin Nephrol Hypertens ; 31(5): 479-485, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894283

RESUMO

PURPOSE OF REVIEW: Kir5.1 interacts with Kir4.2 in proximal tubule and with Kir4.1 in distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) to form basolateral-K+-channels. Kir4.2/Kir5.1 and Kir4.1/Kir5.1 play an important role in regulating Na+/HCO3--transport of the proximal tubule and Na+/K+ -transport in the DCT/CNT/CCD. The main focus of this review is to provide an overview of the recent development in the field regarding the role of Kir5.1 regulating renal electrolyte transport in the proximal tubule and DCT. RECENT FINDINGS: Loss-of-function-mutations of KCNJ16 cause a new form of tubulopathy, characterized by hypokalaemia, Na+-wasting, acid-base-imbalance and metabolic-acidosis. Abnormal bicarbonate transport induced by loss-of-function of KCNJ16-mutants is recapitulated in Kir4.2-knockout-(Kir4.2 KO) mice. Deletion of Kir5.1 also abolishes the effect of dietary Na+ and K+-intakes on the basolateral membrane voltage and NCC expression/activity. Long-term high-salt intake or high-K+-intake causes hyperkalaemic in Kir5.1-deficient mice. SUMMARY: Kir4.2/Kir5.1 activity in the proximal tubule plays a key role in regulating Na+, K+ and bicarbonate-transport through regulating electrogenic-Na+-bicarbonate-cotransporter-(NBCe1) and type 3-Na+/H+-exchanger-(NHE3). Kir4.1/Kir5.1 activity of the DCT plays a critical role in mediating the effect of dietary-K+ and Na+-intakes on NCC activity/expression. As NCC determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), defective regulation of NCC during high-salt and high-K+ compromises renal K+ excretion and K+ homeostasis.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Bicarbonatos/metabolismo , Humanos , Transporte de Íons/fisiologia , Túbulos Renais/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio/metabolismo
5.
Am J Physiol Renal Physiol ; 321(1): F1-F11, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029145

RESUMO

High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.


Assuntos
Túbulos Renais Distais/metabolismo , Ubiquitina-Proteína Ligases Nedd4/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Transporte Biológico/fisiologia , Transporte de Íons/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp/métodos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 3 da Família 12 de Carreador de Soluto/genética
6.
Am J Physiol Renal Physiol ; 320(5): F883-F896, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33818128

RESUMO

Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCß, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Hipopotassemia/etiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio na Dieta/efeitos adversos , Animais , Antibacterianos/farmacologia , Transporte Biológico , Doxiciclina/farmacologia , Canais Epiteliais de Sódio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipopotassemia/induzido quimicamente , Hipopotassemia/genética , Transporte de Íons/fisiologia , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Néfrons/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio/metabolismo , Sódio na Dieta/administração & dosagem , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
7.
Am J Physiol Renal Physiol ; 320(6): F1045-F1058, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900854

RESUMO

High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Sódio na Dieta/administração & dosagem , Sódio na Dieta/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Simportadores de Cloreto de Sódio/genética
8.
J Am Soc Nephrol ; 31(6): 1226-1242, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32295826

RESUMO

BACKGROUND: The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown. METHODS: We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both. RESULTS: Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice. CONCLUSIONS: Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.


Assuntos
Túbulos Renais Distais/metabolismo , Ubiquitina-Proteína Ligases Nedd4/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Simportadores de Cloreto de Sódio/fisiologia , Tiazidas/farmacologia , Animais , Canais Epiteliais de Sódio/fisiologia , Camundongos , Camundongos Knockout
9.
J Am Soc Nephrol ; 30(8): 1425-1438, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239388

RESUMO

BACKGROUND: The basolateral potassium channel in the distal convoluted tubule (DCT), comprising the inwardly rectifying potassium channel Kir4.1/Kir5.1 heterotetramer, plays a key role in mediating the effect of dietary potassium intake on the thiazide-sensitive NaCl cotransporter (NCC). The role of Kir5.1 (encoded by Kcnj16) in mediating effects of dietary potassium intake on the NCC and renal potassium excretion is unknown. METHODS: We used electrophysiology, renal clearance, and immunoblotting to study Kir4.1 in the DCT and NCC in Kir5.1 knockout (Kcnj16-/- ) and wild-type (Kcnj16+/+ ) mice fed with normal, high, or low potassium diets. RESULTS: We detected a 40-pS and 20-pS potassium channel in the basolateral membrane of the DCT in wild-type and knockout mice, respectively. Compared with wild-type, Kcnj16-/- mice fed a normal potassium diet had higher basolateral potassium conductance, a more negative DCT membrane potential, higher expression of phosphorylated NCC (pNCC) and total NCC (tNCC), and augmented thiazide-induced natriuresis. Neither high- nor low-potassium diets affected the basolateral DCT's potassium conductance and membrane potential in Kcnj16-/- mice. Although high potassium reduced and low potassium increased the expression of pNCC and tNCC in wild-type mice, these effects were absent in Kcnj16-/- mice. High potassium intake inhibited and low intake augmented thiazide-induced natriuresis in wild-type but not in Kcnj16-/- mice. Compared with wild-type, Kcnj16-/- mice with normal potassium intake had slightly lower plasma potassium but were more hyperkalemic with prolonged high potassium intake and more hypokalemic during potassium restriction. CONCLUSIONS: Kir5.1 is essential for dietary potassium's effect on NCC and for maintaining potassium homeostasis.


Assuntos
Deleção de Genes , Rim/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio na Dieta/farmacocinética , Animais , Membrana Celular/metabolismo , Dieta , Feminino , Homeostase , Hiperpotassemia/metabolismo , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas/química , Canal Kir5.1
10.
J Am Soc Nephrol ; 30(2): 216-227, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559144

RESUMO

BACKGROUND: Dietary sodium intake regulates the thiazide-sensitive Na-Cl cotransporter (NCC) in the distal convoluted tubule (DCT). Whether the basolateral, inwardly rectifying potassium channel Kir4.1/Kir5.1 (a heterotetramer of Kir4.1/Kir5.1) in the DCT is essential for mediating the effect of dietary sodium intake on NCC activity is unknown. METHODS: We used electrophysiology, renal clearance techniques, and immunoblotting to examine effects of Kir4.1/Kir5.1 in the DCT and NCC in wild-type and kidney-specific Kir4.1 knockout mice. RESULTS: Low sodium intake stimulated basolateral Kir4.1/Kir5.1 activity, increased basolateral K+ conductance, and hyperpolarized the membrane. Conversely, high sodium intake inhibited the potassium channel, decreased basolateral K+ currents, and depolarized the membrane. Low sodium intake increased total and phosphorylated NCC expression and augmented hydrochlorothiazide-induced natriuresis; high sodium intake had opposite effects. Thus, elevated NCC activity induced by low sodium intake was associated with upregulation of Kir4.1/Kir5.1 activity in the DCT, whereas inhibition of NCC activity by high sodium intake was associated with diminished Kir4.1/Kir5.1 activity. In contrast, dietary sodium intake did not affect NCC activity in knockout mice. Further, Kir4.1 deletion not only abolished basolateral K+ conductance and depolarized the DCT membrane, but also abrogated the stimulating effects induced by low sodium intake on basolateral K+ conductance and hyperpolarization. Finally, dietary sodium intake did not alter urinary potassium excretion rate in hypokalemic knockout and wild-type mice. CONCLUSIONS: Stimulation of Kir4.1/Kir5.1 by low intake of dietary sodium is essential for NCC upregulation, and inhibition of Kir4.1/Kir5.1 induced by high sodium intake is a key step for downregulation of NCC.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio na Dieta/farmacologia , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Modelos Animais de Doenças , Eletrofisiologia , Hipopotassemia/tratamento farmacológico , Hipopotassemia/fisiopatologia , Transporte de Íons , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Natriurese/efeitos dos fármacos , Distribuição Aleatória , Receptores de Droga/efeitos dos fármacos , Sensibilidade e Especificidade , Simportadores de Cloreto de Sódio/efeitos dos fármacos , Regulação para Cima
13.
Am J Physiol Renal Physiol ; 317(4): F825-F838, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364380

RESUMO

Hypomagnesemia is associated with reduced kidney function and life-threatening complications and sustains hypokalemia. The distal convoluted tubule (DCT) determines final urinary Mg2+ excretion and, via activity of the Na+-Cl- cotransporter (NCC), also plays a key role in K+ homeostasis by metering Na+ delivery to distal segments. Little is known about the mechanisms by which plasma Mg2+ concentration regulates NCC activity and how low-plasma Mg2+ concentration and K+ concentration interact to modulate NCC activity. To address this, we performed dietary manipulation studies in mice. Compared with normal diet, abundances of total NCC and phosphorylated NCC (pNCC) were lower after short-term (3 days) or long-term (14 days) dietary Mg2+ restriction. Altered NCC activation is unlikely to play a role, since we also observed lower total NCC abundance in mice lacking the two NCC-activating kinases, STE20/SPS-1-related proline/alanine-rich kinase and oxidative stress response kinase-1, after Mg2+ restriction. The E3 ubiquitin-protein ligase NEDD4-2 regulates NCC abundance during dietary NaCl loading or K+ restriction. Mg2+ restriction did not lower total NCC abundance in inducible nephron-specific neuronal precursor cell developmentally downregulated 4-2 (NEDD4-2) knockout mice. Total NCC and pNCC abundances were similar after short-term Mg2+ or combined Mg2+-K+ restriction but were dramatically lower compared with a low-K+ diet. Therefore, sustained NCC downregulation may serve a mechanism that enhances distal Na+ delivery during states of hypomagnesemia, maintaining hypokalemia. Similar results were obtained with long-term Mg2+-K+ restriction, but, surprisingly, NCC was not activated after long-term K+ restriction despite lower plasma K+ concentration, suggesting significant differences in distal tubule adaptation to acute or chronic K+ restriction.


Assuntos
Hipopotassemia/metabolismo , Deficiência de Magnésio/metabolismo , Ubiquitina-Proteína Ligases Nedd4/biossíntese , Animais , Dieta , Regulação para Baixo , Túbulos Renais Distais/metabolismo , Magnésio/sangue , Deficiência de Magnésio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Fosforilação , Potássio/sangue , Deficiência de Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/biossíntese , Membro 3 da Família 12 de Carreador de Soluto/genética
14.
Am J Physiol Renal Physiol ; 315(4): F986-F996, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897283

RESUMO

Kir4.1/5.1 heterotetramer participates in generating the negative cell membrane potential in distal convoluted tubule (DCT) and plays a critical role in determining the activity of Na-Cl cotransporter (NCC). Kir5.1 contains a phosphothreonine motif at its COOH terminus (AA249-252). Coimmunoprecipitation showed that Nedd4-2 was associated with Kir5.1 in HEK293 cells cotransfected with Kir5.1 or Kir4.1/Kir5.1. GST pull-down further confirmed the association between Nedd4-2 and Kir5.1. Ubiquitination assay showed that Nedd4-2 increased the ubiquitination of Kir4.1/Kir5.1 heterotetramer in the cells cotransfected with Kir4.1/Kir5.1, but it has no effect on Kir4.1 or Kir5.1 alone. Patch-clamp and Western blot also demonstrated that coexpression of Nedd4-2 but not Nedd4-1 decreased K currents and Kir4.1 expression in the cells cotransfected with Kir4.1 and Kir5.1. In contrast, Nedd4-2 fails to inhibit Kir4.1 in the absence of Kir5.1 or in the cells transfected with the inactivated form of Nedd4-2 (Nedd4-2C821A). Moreover, the mutation of TPVT motif in the COOH terminus of Kir5.1 largely abolished the association of Nedd4-2 with Kir5.1 and abolished the inhibitory effect of Nedd4-2 on K currents in HEK293 cells transfected with Kir4.1 and Kir5.1 mutant (Kir5.1T249A). Finally, the basolateral K conductance in the DCT and Kir4.1 expression is significantly increased in the kidney-specific Nedd4-2 knockout or in Kir5.1 knockout mice in comparison to their corresponding wild-type littermates. We conclude that Nedd4-2 binds to Kir5.1 at the phosphothreonine motif of the COOH terminus, and the association of Nedd4-2 with Kir5.1 facilitates the ubiquitination of Kir4.1, thereby regulating its plasma expression in the DCT.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/metabolismo , Néfrons/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ubiquitinação , Animais , Transporte de Íons/fisiologia , Túbulos Renais Distais/metabolismo , Potenciais da Membrana/fisiologia , Camundongos Knockout , Canal Kir5.1
15.
Kidney Int ; 93(4): 893-902, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29310825

RESUMO

Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio na Dieta/metabolismo , Alcalose/genética , Alcalose/metabolismo , Alcalose/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Homeostase , Hidroclorotiazida/farmacologia , Hipopotassemia/genética , Hipopotassemia/metabolismo , Hipopotassemia/fisiopatologia , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Natriurese , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Eliminação Renal , Sódio/urina , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canal Kir5.1
16.
Proc Natl Acad Sci U S A ; 112(14): 4495-500, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25805816

RESUMO

With-no-lysine kinase 4 (WNK4) inhibits the activity of the potassium channel KCNJ1 (ROMK) in the distal nephron, thereby contributing to the maintenance of potassium homeostasis. This effect is inhibited via phosphorylation at Ser1196 by serum/glucocorticoid-induced kinase 1 (SGK1), and this inhibition is attenuated by the Src-family protein tyrosine kinase (SFK). Using Western blot and mass spectrometry, we now identify three sites in WNK4 that are phosphorylated by c-Src: Tyr(1092), Tyr(1094), and Tyr(1143), and show that both c-Src and protein tyrosine phosphatase type 1D (PTP-1D) coimmunoprecipitate with WNK4. Mutation of Tyr(1092) or Tyr(1143) to phenylalanine decreased the association of c-Src or PTP-1D with WNK4, respectively. Moreover, the Tyr1092Phe mutation markedly reduced ROMK inhibition by WNK4; this inhibition was completely absent in the double mutant WNK4(Y1092/1094F). Similarly, c-Src prevented SGK1-induced phosphorylation of WNK4 at Ser(1196), an effect that was abrogated in the double mutant. WNK4(Y1143F) inhibited ROMK activity as potently as wild-type (WT) WNK4, but unlike WT, the inhibitory effect of WNK4(Y1143F) could not be reversed by SGK1. The failure to reverse WNK4(Y1143F)-induced inhibition of ROMK by SGK1 was possibly due to enhancing endogenous SFK effect on WNK4 by decreasing the WNK4-PTP-1D association because inhibition of SFK enabled SGK1 to reverse WNK4(Y1143F)-induced inhibition of ROMK. We conclude that WNK4 is a substrate of SFKs and that the association of c-Src and PTP-1D with WNK4 at Tyr(1092) and Tyr(1143) plays an important role in modulating the inhibitory effect of WNK4 on ROMK.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Animais , Sítios de Ligação , Cromatografia Líquida , Eletrofisiologia , Células HEK293 , Humanos , Hiperpotassemia/metabolismo , Hipopotassemia/metabolismo , Camundongos , Mutação , Néfrons/metabolismo , Fosforilação , Ratos , Espectrometria de Massas em Tandem , Titânio/química , Tirosina/química
17.
J Am Soc Nephrol ; 28(6): 1814-1825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28052988

RESUMO

The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na+/Cl- cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na+/K+ exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.


Assuntos
Túbulos Renais Distais/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio , Animais , Túbulos Renais Distais/citologia , Camundongos
18.
Am J Physiol Renal Physiol ; 313(2): F254-F261, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356287

RESUMO

Our aim is to examine the role of PGF2α receptor (FP), a highly expressed prostaglandin receptor in the distal convoluted tubule (DCT) in regulating the basolateral 40-pS K channel. The single-channel studies demonstrated that PGF2α had a biphasic effect on the 40-pS K channel in the DCT-PGF2α stimulated at low concentrations (less than 500 nM), while at high concentrations (above 1 µM), it inhibited the 40-pS K channels. Moreover, neither 13,14-dihydro-15-keto-PGF2α (a metabolite of PGF2α) nor PGE2 was able to mimic the effect of PGF2α on the 40-pS K channel in the DCT. The inhibition of PKC had no significant effect on the 40-pS K channel; however, it abrogated the inhibitory effect of 5 µM PGF2α on the K channel. Moreover, stimulation of PKC inhibited the 40-pS K channel in the DCT, suggesting that PKC mediates the inhibitory effect of PGF2α on the 40-pS K channel. Conversely, the stimulatory effect of PGF2α on the 40-pS K channel was absent in the DCT treated with DPI, a NADPH oxidase (NOX) inhibitor. Also, adding 100 µM H2O2 mimicked the stimulatory effect of PGF2α and increased the 40-pS K channel activity in DCT. Moreover, the stimulatory effect of 500 nM PGF2α and H2O2 was not additive, suggesting the role of superoxide-related species in mediating the stimulatory effect of PGF2α on the 40-pS K channel. The inhibition of Src family tyrosine protein kinase (SFK) not only inhibited the 40-pS K channel in the DCT but also completely abolished the stimulatory effects of PGF2α and H2O2 on the 40-pS K channel. We conclude that PGF2α at low doses stimulates the basolateral 40-pS K channel by a NOX- and SFK-dependent mechanism, while at high concentrations, it inhibits the K channel by a PKC-dependent pathway.


Assuntos
Dinoprosta/farmacologia , Túbulos Renais Distais/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Receptores de Prostaglandina/agonistas , Animais , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Túbulos Renais Distais/metabolismo , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
19.
Am J Physiol Renal Physiol ; 312(4): F682-F688, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365586

RESUMO

Mice transgenic for genomic segments harboring PHAII (pseudohypoaldosteronism type II) mutant Wnk4 (with-No-Lysine kinase 4) (TgWnk4PHAII) have hyperkalemia which is currently believed to be the result of high activity of Na-Cl cotransporter (NCC). This leads to decreasing Na+ delivery to the distal nephron segment including late distal convoluted tubule (DCT) and connecting tubule (CNT). Since epithelial Na+ channel (ENaC) and renal outer medullary K+ channel (ROMK or Kir4.1) are expressed in the late DCT and play an important role in mediating K+ secretion, the aim of the present study is to test whether ROMK and ENaC activity in the DCT/CNT are also compromised in the mice expressing PHAII mutant Wnk4. Western blot analysis shows that the expression of ßENaC and γENaC subunits but not αENaC subunit was lower in TgWnk4PHAII mice than that in wild-type (WT) and TgWnk4WT mice. Patch-clamp experiments detected amiloride-sensitive Na+ currents and TPNQ-sensitive K+ currents in DCT2/CNT, suggesting the activity of ENaC and ROMK. However, both Na+ and ROMK currents in DCT2/CNT of TgWnk4PHAII mice were significantly smaller than those in WT and TgWnk4WT mice. In contrast, the basolateral K+ currents in the DCT were similar among three groups, despite higher NCC expression in TgWnk4PHAII mice than those of WT and TgWnk4WTmice. An increase in dietary K+ intake significantly increased both ENaC and ROMK currents in the DCT2/CNT of all three groups. However, high-K+ (HK) intake-induced stimulation of Na+ and K+ currents was smaller in TgWnk4PHAII mice than those in WT and TgWnk4WT mice. We conclude that ENaC and ROMK channel activity in DCT2/CNT are inhibited in TgWnk4PHAII mice and that Wnk4PHAII-induced inhibition of ENaC and ROMK may contribute to the suppression of K+ secretion in the DCT2/CNT in addition to increased NCC activity.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Síndrome de Liddle/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Canais Epiteliais de Sódio/genética , Feminino , Predisposição Genética para Doença , Hiperpotassemia/genética , Hiperpotassemia/metabolismo , Síndrome de Liddle/genética , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potássio na Dieta/administração & dosagem , Potássio na Dieta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Eliminação Renal , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 111(32): 11864-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071208

RESUMO

The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10(+/+) mice (WT). This 40-pS K channel is absent in homozygous Kcnj10(-/-) (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline-alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline-alanine-rich kinase-dependent mechanism.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Imuno-Histoquímica , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canal Kir5.1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa